金融贷款批准预测项目

注意:本文引用自专业人工智能社区Venus AI

更多AI知识请参考原站 ([www.aideeplearning.cn])

在金融服务行业,贷款审批是一项关键任务,它不仅关系到资金的安全,还直接影响到金融机构的运营效率和风险管理。传统的审批流程往往依赖于人工审核,这不仅效率低下,而且容易受到主观判断的影响。为了解决这些问题,我们引入了一种基于机器学习的贷款预测模型,旨在提高贷款审批的准确性和效率。

项目背景

在当前的金融市场中,违约率的不断波动对贷款审批流程提出了新的挑战。传统方法往往无法有效预测和管理这些风险,因此需要一种更智能、更可靠的方法来评估贷款申请。通过使用机器学习,我们可以从大量历史数据中学习并识别违约的潜在风险,这不仅能提高贷款批准的准确性,还能大大降低金融机构的损失。

经过训练的模型将用于预测新的贷款申请是否有高风险。这将帮助金融机构在贷款批准过程中做出更加明智的决策,减少不良贷款的比例,提高整体的财务健康状况。

数据集

我们项目使用的数据集包括了广泛的客户特征,这些特征反映了贷款申请者的财务状况和背景。具体包括:

  1. 性别(Gender):申请人的性别。
  2. 婚姻状况(Married):申请人的婚姻状态。
  3. 受抚养人数(Dependents):申请人负责抚养的人数。
  4. 教育背景(Education):申请人的教育水平。
  5. 是否自雇(Self_Employed):申请人是否拥有自己的业务。
  6. 申请人收入(ApplicantIncome):申请人的月收入。
  7. 共同申请人收入(CoapplicantIncome):与申请人一同申请贷款的人的月收入。
  8. 贷款金额(LoanAmount):申请的贷款总额。
  9. 贷款期限(Loan_Amount_Term):预期的还款期限。
  10. 信用历史(Credit_History):申请人的信用记录。
  11. 财产区域(Property_Area):申请人财产所在的地理位置。

模型和依赖库

Models:

  1. RandomForestRegressor
  2. Decision Tree Regression
  3. logistic regression

Libraries:

  1. matplotlib==3.7.1
  2. numpy==1.24.3
  3. pandas==2.0.2
  4. scikit_learn==1.2.2
  5. seaborn==0.13.0

代码实现

金融贷款批准预测

项目背景

在金融领域,贷款审批是向任何人提供贷款之前需要执行的一项至关重要的任务。 这确保了批准的贷款将来可以收回。 然而,要确定一个人是否适合贷款或违约者,就很难确定有助于做出决定的性格和特征。

在这些情况下,使用机器学习的贷款预测模型成为非常有用的工具,可以根据过去的数据来预测该人是否违约。

我们获得了两个数据集(训练和测试),其中包含过去的交易,其中包括客户的一些特征以及显示客户是否违约的标签。 我们建立了一个模型,可以在训练数据集上执行,并可以预测贷款是否应获得批准。

About Data:

导入库并加载数据

#Impoting libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
df_train = pd.read_csv("train_u6lujuX_CVtuZ9i.csv")
df_test = pd.read_csv("test_Y3wMUE5_7gLdaTN.csv")
df_train.head()
Loan_IDGenderMarriedDependentsEducationSelf_EmployedApplicantIncomeCoapplicantIncomeLoanAmountLoan_Amount_TermCredit_HistoryProperty_AreaLoan_Status
0LP001002MaleNo0GraduateNo58490.0NaN360.01.0UrbanY
1LP001003MaleYes1GraduateNo45831508.0128.0360.01.0RuralN
2LP001005MaleYes0GraduateYes30000.066.0360.01.0UrbanY
3LP001006MaleYes0Not GraduateNo25832358.0120.0360.01.0UrbanY
4LP001008MaleNo0GraduateNo60000.0141.0360.01.0UrbanY
df_test.head()
Loan_IDGenderMarriedDependentsEducationSelf_EmployedApplicantIncomeCoapplicantIncomeLoanAmountLoan_Amount_TermCredit_HistoryProperty_Area
0LP001015MaleYes0GraduateNo57200110.0360.01.0Urban
1LP001022MaleYes1GraduateNo30761500126.0360.01.0Urban
2LP001031MaleYes2GraduateNo50001800208.0360.01.0Urban
3LP001035MaleYes2GraduateNo23402546100.0360.0NaNUrban
4LP001051MaleNo0Not GraduateNo3276078.0360.01.0Urban
#shape of data
df_train.shape
(614, 13)
#data summary
df_train.describe()
ApplicantIncomeCoapplicantIncomeLoanAmountLoan_Amount_TermCredit_History
count614.000000614.000000592.000000600.00000564.000000
mean5403.4592831621.245798146.412162342.000000.842199
std6109.0416732926.24836985.58732565.120410.364878
min150.0000000.0000009.00000012.000000.000000
25%2877.5000000.000000100.000000360.000001.000000
50%3812.5000001188.500000128.000000360.000001.000000
75%5795.0000002297.250000168.000000360.000001.000000
max81000.00000041667.000000700.000000480.000001.000000
df_train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):
 #   Column             Non-Null Count  Dtype  
---  ------             --------------  -----  
 0   Loan_ID            614 non-null    object 
 1   Gender             601 non-null    object 
 2   Married            611 non-null    object 
 3   Dependents         599 non-null    object 
 4   Education          614 non-null    object 
 5   Self_Employed      582 non-null    object 
 6   ApplicantIncome    614 non-null    int64  
 7   CoapplicantIncome  614 non-null    float64
 8   LoanAmount         592 non-null    float64
 9   Loan_Amount_Term   600 non-null    float64
 10  Credit_History     564 non-null    float64
 11  Property_Area      614 non-null    object 
 12  Loan_Status        614 non-null    object 
dtypes: float64(4), int64(1), object(8)
memory usage: 62.5+ KB

数据清洗

# 检测空值
df_train.isna().sum()
Loan_ID               0
Gender               13
Married               3
Dependents           15
Education             0
Self_Employed        32
ApplicantIncome       0
CoapplicantIncome     0
LoanAmount           22
Loan_Amount_Term     14
Credit_History       50
Property_Area         0
Loan_Status           0
dtype: int64

有很多空值,Credit_History 的最大值为 50。

去除所有空值

# Dropping all the null values
drop_list = ['Gender','Married','Dependents','Self_Employed','LoanAmount','Loan_Amount_Term','Credit_History']
for col in drop_list:
 df_train = df_train[~df_train[col].isna()]
df_train.isna().sum()
Loan_ID              0
Gender               0
Married              0
Dependents           0
Education            0
Self_Employed        0
ApplicantIncome      0
CoapplicantIncome    0
LoanAmount           0
Loan_Amount_Term     0
Credit_History       0
Property_Area        0
Loan_Status          0
dtype: int64

Loan_ID 列没用,这里删除它

# dropping Loan_ID
df_train.drop(columns='Loan_ID',axis=1, inplace=True)
df_train.shape
(480, 12)
#data summary
df_train.describe()
ApplicantIncomeCoapplicantIncomeLoanAmountLoan_Amount_TermCredit_History
count480.000000480.000000480.000000480.000000480.000000
mean5364.2312501581.093583144.735417342.0500000.854167
std5668.2512512617.69226780.50816465.2124010.353307
min150.0000000.0000009.00000036.0000000.000000
25%2898.7500000.000000100.000000360.0000001.000000
50%3859.0000001084.500000128.000000360.0000001.000000
75%5852.5000002253.250000170.000000360.0000001.000000
max81000.00000033837.000000600.000000480.0000001.000000

数据分析(EDA)

df_train.head()
GenderMarriedDependentsEducationSelf_EmployedApplicantIncomeCoapplicantIncomeLoanAmountLoan_Amount_TermCredit_HistoryProperty_AreaLoan_Status
1MaleYes1GraduateNo45831508.0128.0360.01.0RuralN
2MaleYes0GraduateYes30000.066.0360.01.0UrbanY
3MaleYes0Not GraduateNo25832358.0120.0360.01.0UrbanY
4MaleNo0GraduateNo60000.0141.0360.01.0UrbanY
5MaleYes2GraduateYes54174196.0267.0360.01.0UrbanY
#distribution of Churn data
sns.displot(data=df_train,x='Loan_Status')
<seaborn.axisgrid.FacetGrid at 0x1f54d853bb0>

数据集是不平衡的,但是不是非常严重

自变量相对于因变量的分布.

# 设置分类特征
categorical_features=list(df_train.columns)
numeical_features = list(df_train.describe().columns)
for elem in numeical_features:
 categorical_features.remove(elem)
categorical_features = categorical_features[:-1]
categorical_features
['Gender',
 'Married',
 'Dependents',
 'Education',
 'Self_Employed',
 'Property_Area']
# Set categorical and numerical features
categorical_features = list(df_train.columns)
numerical_features = list(df_train.describe().columns)
for elem in numerical_features:
    categorical_features.remove(elem)
categorical_features.remove('Loan_Status')  # Assuming 'Loan_Status' is not a feature to plot

# Determine the layout of subplots
n_cols = 2  # Can be adjusted based on preference
n_rows = (len(categorical_features) + 1) // n_cols

# Create a grid of subplots
fig, axes = plt.subplots(nrows=n_rows, ncols=n_cols, figsize=(12, n_rows * 4))

# Flatten the axes array for easy iteration
axes = axes.flatten()

# Plot each bar chart
for i, col in enumerate(categorical_features):
    df_train.groupby([col, 'Loan_Status']).size().unstack().plot(kind='bar', stacked=True, ax=axes[i])
    axes[i].set_title(f'Total count of Loan_Status grouped by {col}')
    axes[i].set_ylabel('Count')

# Adjust layout and display the plot
plt.tight_layout()
plt.show()

从上面的图中观察到的结果:

  • 与女性相比,男性获得贷款批准的比例更高。
  • 与非毕业生相比,贷款审批对毕业生更有利。

  • 与受雇者相比,个体经营者获得贷款批准的机会较少。

  • 城乡结合部的贷款批准率最高。

让我们看看按因变量分组的连续自变量

numerical_features = df_train.describe().columns

# Determine the layout of subplots
n_cols = 2  # Adjust based on preference
n_rows = (len(numerical_features) + 1) // n_cols

# Create a grid of subplots
fig, axes = plt.subplots(nrows=n_rows, ncols=n_cols, figsize=(12, n_rows * 4))

# Flatten the axes array for easy iteration
axes = axes.flatten()

# Plot each boxplot
for i, col in enumerate(numerical_features):
    sns.boxplot(x='Loan_Status', y=col, data=df_train, ax=axes[i])
    axes[i].set_title(f'Distribution of {col} grouped by Loan_Status')

# Adjust layout and display the plot
plt.tight_layout()
plt.show()

我们可以在数据中观察到很多异常值。

从上面的箱线图中无法得出任何正确的结论。

相关性分析

 ## Correlation between variables
plt.figure(figsize=(15,8))
correlation = df_train.corr()
sns.heatmap((correlation), annot=True, cmap='coolwarm')
<Axes: >

没有观察到任何显着的相关性。

数据预处理

df_train.head()
GenderMarriedDependentsEducationSelf_EmployedApplicantIncomeCoapplicantIncomeLoanAmountLoan_Amount_TermCredit_HistoryProperty_AreaLoan_Status
1MaleYes1GraduateNo45831508.0128.0360.01.0RuralN
2MaleYes0GraduateYes30000.066.0360.01.0UrbanY
3MaleYes0Not GraduateNo25832358.0120.0360.01.0UrbanY
4MaleNo0GraduateNo60000.0141.0360.01.0UrbanY
5MaleYes2GraduateYes54174196.0267.0360.01.0UrbanY
df_train['Property_Area'].value_counts()
Semiurban    191
Urban        150
Rural        139
Name: Property_Area, dtype: int64
df_train['Credit_History'].value_counts()
1.0    410
0.0     70
Name: Credit_History, dtype: int64
df_train['Dependents'].value_counts()
0     274
2      85
1      80
3+     41
Name: Dependents, dtype: int64

使用标签编码将分类列转换为数字

#Label encoding for some categorical features
df_train_new = df_train.copy()
label_col_list = ['Married','Self_Employed']
for col in label_col_list:
  df_train_new=df_train_new.replace({col:{'Yes':1,'No':0}})
df_train_new=df_train_new.replace({'Gender':{'Male':1,'Female':0}})
df_train_new=df_train_new.replace({'Education':{'Graduate':1,'Not Graduate':0}})
df_train_new=df_train_new.replace({'Loan_Status':{'Y':1,'N':0}})

对于其余的分类特征,我们将进行一种热编码:

#one hot encoding
df_train_new = pd.get_dummies(df_train_new, columns=["Dependents","Property_Area"])
df_train_new.head()
GenderMarriedEducationSelf_EmployedApplicantIncomeCoapplicantIncomeLoanAmountLoan_Amount_TermCredit_HistoryLoan_StatusDependents_0Dependents_1Dependents_2Dependents_3+Property_Area_RuralProperty_Area_SemiurbanProperty_Area_Urban
1111045831508.0128.0360.01.000100100
2111130000.066.0360.01.011000001
3110025832358.0120.0360.01.011000001
4101060000.0141.0360.01.011000001
5111154174196.0267.0360.01.010010001

标准化连续变量。

#standardize continuous features
from scipy.stats import zscore
df_train_new[['ApplicantIncome','CoapplicantIncome','LoanAmount','Loan_Amount_Term']]=df_train_new[['ApplicantIncome','CoapplicantIncome','LoanAmount','Loan_Amount_Term']].apply(zscore) 
df_train_new.head()
GenderMarriedEducationSelf_EmployedApplicantIncomeCoapplicantIncomeLoanAmountLoan_Amount_TermCredit_HistoryLoan_StatusDependents_0Dependents_1Dependents_2Dependents_3+Property_Area_RuralProperty_Area_SemiurbanProperty_Area_Urban
11110-0.137970-0.027952-0.2080890.2755421.000100100
21111-0.417536-0.604633-0.9790010.2755421.011000001
31100-0.4911800.297100-0.3075620.2755421.011000001
410100.112280-0.604633-0.0464460.2755421.011000001
511110.0093190.9999781.5202450.2755421.010010001
# Repositioning the dependent variable to last index
last_column = df_train_new.pop('Loan_Status')
df_train_new.insert(16, 'Loan_Status', last_column)
df_train_new.head()
GenderMarriedEducationSelf_EmployedApplicantIncomeCoapplicantIncomeLoanAmountLoan_Amount_TermCredit_HistoryDependents_0Dependents_1Dependents_2Dependents_3+Property_Area_RuralProperty_Area_SemiurbanProperty_Area_UrbanLoan_Status
11110-0.137970-0.027952-0.2080890.2755421.001001000
21111-0.417536-0.604633-0.9790010.2755421.010000011
31100-0.4911800.297100-0.3075620.2755421.010000011
410100.112280-0.604633-0.0464460.2755421.010000011
511110.0093190.9999781.5202450.2755421.000100011

数据处理完毕,准备训练模型

数据集划分

由于我们的数据仅用于训练,其他数据可用于测试。 我们仍然会进行训练测试分割,因为测试数据没有标记,并且有必要根据未见过的数据评估模型。

X= df_train_new.iloc[:,:-1]
y= df_train_new.iloc[:,-1]
from sklearn.model_selection import train_test_split 
X_train, X_test, y_train, y_test = train_test_split( X,y , test_size = 0.2, random_state = 0) 
print(X_train.shape)
print(X_test.shape)
(384, 16)
(96, 16)
y_train.value_counts()
1    271
0    113
Name: Loan_Status, dtype: int64
y_test.value_counts()
1    61
0    35
Name: Loan_Status, dtype: int64

对训练数据进行逻辑回归拟合

#Importing and fitting Logistic regression
from sklearn.linear_model import LogisticRegression

lr = LogisticRegression(fit_intercept=True, max_iter=10000,random_state=0)
lr.fit(X_train, y_train)

LogisticRegression

LogisticRegression(max_iter=10000, random_state=0)
# Get the model coefficients
lr.coef_
array([[ 0.23272114,  0.57128602,  0.26384918, -0.24617035,  0.15924191,
        -0.14703758, -0.19280038, -0.16392914,  2.97399665, -0.18202629,
        -0.27741114,  0.17256535,  0.28601466, -0.30275813,  0.64592912,
        -0.3440284 ]])
#model intercept
lr.intercept_
array([-2.1943974])

评价训练模型的性能

# Get the predicted probabilities
train_preds = lr.predict_proba(X_train)
test_preds = lr.predict_proba(X_test)
test_preds
array([[0.23916396, 0.76083604],
       [0.24506751, 0.75493249],
       [0.04933527, 0.95066473],
       [0.20146124, 0.79853876],
       [0.2347122 , 0.7652878 ],
       [0.05817427, 0.94182573],
       [0.17668886, 0.82331114],
       [0.21352909, 0.78647091],
       [0.39015173, 0.60984827],
       [0.1902079 , 0.8097921 ],
       [0.20590091, 0.79409909],
       [0.184445  , 0.815555  ],
       [0.80677694, 0.19322306],
       [0.23024539, 0.76975461],
       [0.23674387, 0.76325613],
       [0.32409412, 0.67590588],
       [0.08612609, 0.91387391],
       [0.20502754, 0.79497246],
       [0.71006169, 0.28993831],
       [0.05818474, 0.94181526],
       [0.16546532, 0.83453468],
       [0.1191243 , 0.8808757 ],
       [0.16412334, 0.83587666],
       [0.14471253, 0.85528747],
       [0.49082632, 0.50917368],
       [0.37484189, 0.62515811],
       [0.20042593, 0.79957407],
       [0.07289182, 0.92710818],
       [0.10696878, 0.89303122],
       [0.27313905, 0.72686095],
       [0.07661587, 0.92338413],
       [0.07911086, 0.92088914],
       [0.32357856, 0.67642144],
       [0.24855278, 0.75144722],
       [0.25736849, 0.74263151],
       [0.10330185, 0.89669815],
       [0.27934665, 0.72065335],
       [0.23504431, 0.76495569],
       [0.37235234, 0.62764766],
       [0.82612173, 0.17387827],
       [0.25597195, 0.74402805],
       [0.07027974, 0.92972026],
       [0.21138903, 0.78861097],
       [0.30656929, 0.69343071],
       [0.12859877, 0.87140123],
       [0.22422238, 0.77577762],
       [0.19222405, 0.80777595],
       [0.33904961, 0.66095039],
       [0.21169609, 0.78830391],
       [0.12783677, 0.87216323],
       [0.21562742, 0.78437258],
       [0.1003408 , 0.8996592 ],
       [0.39205576, 0.60794424],
       [0.10298106, 0.89701894],
       [0.34917087, 0.65082913],
       [0.31848606, 0.68151394],
       [0.46697536, 0.53302464],
       [0.83005638, 0.16994362],
       [0.84749511, 0.15250489],
       [0.82240763, 0.17759237],
       [0.08938059, 0.91061941],
       [0.38214865, 0.61785135],
       [0.62202628, 0.37797372],
       [0.1124887 , 0.8875113 ],
       [0.29371977, 0.70628023],
       [0.12829643, 0.87170357],
       [0.30152976, 0.69847024],
       [0.12669798, 0.87330202],
       [0.07601492, 0.92398508],
       [0.06068026, 0.93931974],
       [0.05461916, 0.94538084],
       [0.10209121, 0.89790879],
       [0.20592351, 0.79407649],
       [0.56190874, 0.43809126],
       [0.19828342, 0.80171658],
       [0.20171019, 0.79828981],
       [0.11960918, 0.88039082],
       [0.25602438, 0.74397562],
       [0.18013843, 0.81986157],
       [0.37225288, 0.62774712],
       [0.21781716, 0.78218284],
       [0.10365239, 0.89634761],
       [0.29076172, 0.70923828],
       [0.59602673, 0.40397327],
       [0.39435357, 0.60564643],
       [0.40070233, 0.59929767],
       [0.88224869, 0.11775131],
       [0.22235351, 0.77764649],
       [0.1765423 , 0.8234577 ],
       [0.75247369, 0.24752631],
       [0.20366031, 0.79633969],
       [0.85207477, 0.14792523],
       [0.3873617 , 0.6126383 ],
       [0.12318258, 0.87681742],
       [0.06667711, 0.93332289],
       [0.17440779, 0.82559221]])
# Get the predicted classes
train_class_preds = lr.predict(X_train)
test_class_preds = lr.predict(X_test)
train_class_preds
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
       0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1,
       1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
       1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1,
       1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1,
       0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
       1, 1, 1, 0, 1, 0, 1, 1, 1, 0], dtype=int64)

准确率

from sklearn.metrics import accuracy_score, confusion_matrix ,classification_report
# Get the accuracy scores
train_accuracy = accuracy_score(train_class_preds,y_train)
test_accuracy = accuracy_score(test_class_preds,y_test)

print("The accuracy on train data is ", train_accuracy)
print("The accuracy on test data is ", test_accuracy)
The accuracy on train data is  0.8229166666666666
The accuracy on test data is  0.7604166666666666

由于我们的数据有些不平衡,准确性可能不是一个好的指标。 让我们使用 roc_auc 分数。

# Get the roc_auc scores
train_roc_auc = accuracy_score(y_train,train_class_preds)
test_roc_auc = accuracy_score(y_test,test_class_preds)

print("The accuracy on train data is ", train_roc_auc)
print("The accuracy on test data is ", test_roc_auc)
The accuracy on train data is  0.8229166666666666
The accuracy on test data is  0.7604166666666666
# Other evaluation metrics for train data
print(classification_report(train_class_preds,y_train))
              precision    recall  f1-score   support

           0       0.45      0.89      0.60        57
           1       0.98      0.81      0.89       327

    accuracy                           0.82       384
   macro avg       0.71      0.85      0.74       384
weighted avg       0.90      0.82      0.84       384

# Other evaluation metrics for train data
print(classification_report(y_test,test_class_preds))
              precision    recall  f1-score   support

           0       1.00      0.34      0.51        35
           1       0.73      1.00      0.84        61

    accuracy                           0.76        96
   macro avg       0.86      0.67      0.68        96
weighted avg       0.83      0.76      0.72        96

训练集和测试集上的混淆矩阵

# Get the confusion matrix for trained data

labels = ['Notapproved', 'approved']
cm = confusion_matrix(y_train, train_class_preds)
print(cm)

ax= plt.subplot()
sns.heatmap(cm, annot=True, ax = ax) #annot=True to annotate cells

# labels, title and ticks
ax.set_xlabel('Predicted labels')
ax.set_ylabel('True labels')
ax.set_title('Confusion Matrix on trained data')
ax.xaxis.set_ticklabels(labels)
ax.yaxis.set_ticklabels(labels)
plt.show()


# Get the confusion matrix for test data

labels = ['Notapproved', 'approved']
cm = confusion_matrix(y_test, test_class_preds)
print(cm)

ax= plt.subplot()
sns.heatmap(cm, annot=True, ax = ax); #annot=True to annotate cells

# labels, title and ticks
ax.set_xlabel('Predicted labels')
ax.set_ylabel('True labels')
ax.set_title('Confusion Matrix on test data')
ax.xaxis.set_ticklabels(labels)
ax.yaxis.set_ticklabels(labels)
[[ 51  62]
 [  6 265]]

[[12 23]
 [ 0 61]]
[Text(0, 0.5, 'Notapproved'), Text(0, 1.5, 'approved')]

决策树

#Importing libraries
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import GridSearchCV
# applying GreadsearchCV to identify best parameters
decision_tree = DecisionTreeClassifier()
tree_para = {'criterion':['gini','entropy'],'max_depth':[4,5,6,7,8,9,10,11,12,15,20,30,40,50,70,90,120,150]}
clf = GridSearchCV(decision_tree, tree_para, cv=5)
clf.fit(X_train, y_train)

clf.best_params_
{'criterion': 'gini', 'max_depth': 4}
#applying decision tree classifier
dt = DecisionTreeClassifier(criterion='gini',max_depth=4,random_state=0)
dt.fit(X_train, y_train)

train_class_preds = dt.predict(X_train)
test_class_preds = dt.predict(X_test)

Accuracy Score

# Get the accuracy scores
train_accuracy = accuracy_score(train_class_preds,y_train)
test_accuracy = accuracy_score(test_class_preds,y_test)

print("The accuracy on train data is ", train_accuracy)
print("The accuracy on test data is ", test_accuracy)
The accuracy on train data is  0.8463541666666666
The accuracy on test data is  0.71875

roc_auc score

# Get the roc_auc scores
train_roc_auc = accuracy_score(y_train,train_class_preds)
test_roc_auc = accuracy_score(y_test,test_class_preds)

print("The accuracy on train data is ", train_roc_auc)
print("The accuracy on test data is ", test_roc_auc)
The accuracy on train data is  0.8463541666666666
The accuracy on test data is  0.71875
# Other evaluation metrics for train data
print(classification_report(train_class_preds,y_train))
              precision    recall  f1-score   support

           0       0.54      0.90      0.67        68
           1       0.97      0.84      0.90       316

    accuracy                           0.85       384
   macro avg       0.76      0.87      0.79       384
weighted avg       0.90      0.85      0.86       384
# Other evaluation metrics for train data
print(classification_report(y_test,test_class_preds))
              precision    recall  f1-score   support

           0       0.70      0.40      0.51        35
           1       0.72      0.90      0.80        61

    accuracy                           0.72        96
   macro avg       0.71      0.65      0.66        96
weighted avg       0.72      0.72      0.70        96

Confusion matrix on trained and test data

# Get the confusion matrix for trained data

labels = ['Notapproved', 'approved']
cm = confusion_matrix(y_train, train_class_preds)
print(cm)

ax= plt.subplot()
sns.heatmap(cm, annot=True, ax = ax) #annot=True to annotate cells

# labels, title and ticks
ax.set_xlabel('Predicted labels')
ax.set_ylabel('True labels')
ax.set_title('Confusion Matrix on trained data')
ax.xaxis.set_ticklabels(labels)
ax.yaxis.set_ticklabels(labels)
plt.show()

# Get the confusion matrix for test data

labels = ['Notapproved', 'approved']
cm = confusion_matrix(y_test, test_class_preds)
print(cm)

ax= plt.subplot()
sns.heatmap(cm, annot=True, ax = ax); #annot=True to annotate cells

# labels, title and ticks
ax.set_xlabel('Predicted labels')
ax.set_ylabel('True labels')
ax.set_title('Confusion Matrix on test data')
ax.xaxis.set_ticklabels(labels)
ax.yaxis.set_ticklabels(labels)
[[ 61  52]
 [  7 264]]

[[14 21]
 [ 6 55]]
[Text(0, 0.5, 'Notapproved'), Text(0, 1.5, 'approved')]

随机森林

# applying Random forrest classifier with Hyperparameter tuning
from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier()
grid_values = {'n_estimators':[50, 80,  100], 'max_depth':[4,5,6,7,8,9,10]}
rf_gd = GridSearchCV(rf, param_grid = grid_values, scoring = 'roc_auc', cv=5)

# Fit the object to train dataset
rf_gd.fit(X_train, y_train)

train_class_preds = rf_gd.predict(X_train)
test_class_preds = rf_gd.predict(X_test)

Accuracy Score

# Get the accuracy scores
train_accuracy = accuracy_score(train_class_preds,y_train)
test_accuracy = accuracy_score(test_class_preds,y_test)

print("The accuracy on train data is ", train_accuracy)
print("The accuracy on test data is ", test_accuracy)
The accuracy on train data is  0.890625
The accuracy on test data is  0.75

roc_auc Score

# Get the roc_auc scores
train_roc_auc = accuracy_score(y_train,train_class_preds)
test_roc_auc = accuracy_score(y_test,test_class_preds)

print("The accuracy on train data is ", train_roc_auc)
print("The accuracy on test data is ", test_roc_auc)
The accuracy on train data is  0.890625
The accuracy on test data is  0.75

Confusion Matrix

# Get the confusion matrix for trained data

labels = ['Notapproved', 'approved']
cm = confusion_matrix(y_train, train_class_preds)
print(cm)

ax= plt.subplot()
sns.heatmap(cm, annot=True, ax = ax) #annot=True to annotate cells

# labels, title and ticks
ax.set_xlabel('Predicted labels')
ax.set_ylabel('True labels')
ax.set_title('Confusion Matrix on trained data')
ax.xaxis.set_ticklabels(labels)
ax.yaxis.set_ticklabels(labels)
plt.show()

# Get the confusion matrix for test data

labels = ['Notapproved', 'approved']
cm = confusion_matrix(y_test, test_class_preds)
print(cm)

ax= plt.subplot()
sns.heatmap(cm, annot=True, ax = ax); #annot=True to annotate cells

# labels, title and ticks
ax.set_xlabel('Predicted labels')
ax.set_ylabel('True labels')
ax.set_title('Confusion Matrix on test data')
ax.xaxis.set_ticklabels(labels)
ax.yaxis.set_ticklabels(labels)
plt.show()
[[ 72  41]
 [  1 270]]

[[13 22]
 [ 2 59]]

  • 最佳 roc_auc 分数源于随机森林分类器,因此随机森林是该模型的最佳预测模型。

代码与数据集下载

详情请见金融贷款批准预测项目-VenusAI (aideeplearning.cn)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/516828.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Java笔记】多线程0:JVM线程是用户态还是内核态?Java 线程与OS线程的联系

文章目录 JVM线程是用户态线程还是内核态线程什么是用户态线程与内核态线程绿色线程绿色线程的缺点 线程映射稍微回顾下线程映射模型JVM线程映射 线程状态操作系统的线程状态JVM的线程状态JVM线程与OS线程的状态关系 Reference 今天复盘一下Java中&#xff0c;JVM线程与实际操作…

面试算法-140-接雨水

题目 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 示例 1&#xff1a; 输入&#xff1a;height [0,1,0,2,1,0,1,3,2,1,2,1] 输出&#xff1a;6 解释&#xff1a;上面是由数组 [0,1,0,2,1,0,1,3,2…

Java web第一次作业

1.学会用记事本编写jsp文件&#xff0c;并放进tomcat的相关目录下&#xff0c;运行。 源代码&#xff1a; <% page contentType"text/html;charsetUTF-8" language"java" %> <html> <head> <title>我的第一个JSP页面</ti…

在深度学习模型中引入先验

当面对复杂问题的时候&#xff0c;在深度学习模型提取特征的过程中完全抛弃知识是非常不明智的策略。虽然有很多研究者在深度网络处理数据之前&#xff0c;利用具有某种知识的模型驱动方法对数据进行预处理&#xff0c;但是这种方法没有进行实质性地改造深度网络&#xff0c;且…

组合总和 II-java

题目描述: 给定一个候选人编号的集合 candidates 和一个目标数 target &#xff0c;找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的每个数字在每个组合中只能使用 一次 。 注意&#xff1a;解集不能包含重复的组合。 解题思想: 回溯法 剪枝 : …

PWM技术的应用

目录 PWM技术简介 PWM重要参数 PWM实现呼吸灯 脉宽调制波形 PWM案例 电路图 keil文件 直流电机 直流电机的控制 直流电机的驱动芯片L293D L293D引脚图 L293D功能表 直流电机案例 电路图 keil文件 步进电机 步进电机特点 步进电机驱动芯片L298 L298引脚图 L…

【Canvas与艺术】绘制黑白纹章,内嵌陶渊明南山诗

【效果图】 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>用Canvas绘制黑白纹章</title><style type"text/css…

Doris实践——信贷系统日志分析场景的实践应用

目录 前言 一、早期架构演进 1.1 架构1.0 基于Kettle MySQL离线数仓 1.2 架构2.0 基于 Presto / Trino统一查询 二、基于Doris的新一代架构 三、新数仓架构搭建经验 3.1 并发查询加速 3.2 数仓底座建设 四、Doris助力信DolphinScheduler 和 Shell 贷业务场景落地 4.…

QT----opencv4.8.0编译cuda版本,QTcreater使用

目录 1 编译opencv4.8.02 验证能否加载GPU cuda12.1 opencv4.8.0 vs2019 cmake3.29 1 编译opencv4.8.0 打开cmake&#xff0c;选择opencv480路径&#xff0c;build路径随意 点击configure后&#xff0c;选择这些选项&#xff0c;opencv_word&#xff0c;cuda全选&#xff0c;…

一款功能强大且易于使用的视频剪辑应用程序

一款功能强大且易于使用的视频剪辑应用程序&#xff0c;它提供了丰富多样的转场特效和滤镜&#xff0c;让用户能够轻松地为视频添加各种炫酷的效果。与其他视频编辑软件相比&#xff0c;剪映国际版的最大亮点在于其完全免费使用。首先&#xff0c;剪映国际版为用户提供了丰富的…

pth转onnx,同时使用onnx进行部署

当像我一样的菜鸡在使用开源的深度学习代码时&#xff0c;对于输出的pth模型文件&#xff0c;在预测时使用开源的predict.py文件进行部署&#xff0c;但是使用pth文件有一个问题&#xff0c;就是每次他都要重新加载一次模型&#xff0c;而且不方便移植&#xff0c;所以&#xf…

Java 面向对象(基础)

1、面向对象的概述及两大要素&#xff1a;类与对象 1. 面向对象内容的三条主线&#xff1a; - Java类及类的成员&#xff1a;&#xff08;重点&#xff09;属性、方法、构造器&#xff1b;&#xff08;熟悉&#xff09;代码块、内部类 - 面向对象的特征&#xff1a;封装、继承…

31-数据流:通过iam-authz-server设计,看数据流服务的设计

IAM数据流服务iam-authz-server的设计和实现。 iam-authz-server的功能介绍 iam-authz-server目前的唯一功能&#xff0c;是通过提供 /v1/authz RESTful API接口完成资源授权。 /v1/authz 接口是通过github.com/ory/ladon来完成资源授权的。 因为iam-authz-server承载了数据流…

ES6展开运算符

1.展开可迭代对象&#xff08;简单理解为数组和伪数组&#xff09;&#xff0c;如数组、 NodeList 、arguments。 可以通过展开运算符把一个伪数组转换为数组 const a [...document.body.children]; console.log(a); console.log(Array.isArray(a));2.实现数组的浅拷贝 cons…

51单片机入门之独立按键

目录 1.按键简介 2.独立按键控制LED亮灭 3.独立按键控制LED移位 1.按键简介 在生活中&#xff0c;我们常常会见到各种按键&#xff0c;我们的开发板上也有按键&#xff0c;就在左下角有四个按键&#xff0c;我们把它们叫做独立按键。 独立按键的原理比较简单&…

【三十三】【算法分析与设计】回溯(1),46. 全排列,78. 子集,没有树结构,但是依旧模拟树结构,回溯,利用全局变量+递归函数模拟树结构

46. 全排列 给定一个不含重复数字的数组 nums &#xff0c;返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。 示例 1&#xff1a; 输入&#xff1a;nums [1&#xff0c;2&#xff0c;3] 输出&#xff1a;[[1&#xff0c;2&#xff0c;3]&#xff0c;[1&#xff0c;3&a…

WPF中通过自定义Panel实现控件拖动

背景 看到趋时软件的公众号文章&#xff08;WPF自定义Panel&#xff1a;让拖拽变得更简单&#xff09;&#xff0c;发现可以不通过Drag的方法来实现ListBox控件的拖动&#xff0c;而是通过对控件的坐标相加减去实现控件的位移等判断&#xff0c;因此根据文章里面的代码,边理解边…

考题抄错会做也白搭--模版方法模式

1.1 选择题不会做&#xff0c;蒙呗&#xff01; "题目抄错了&#xff0c;那就不是考试题目了&#xff0c;而考试试卷最大的好处就是&#xff0c;大家都是一样的题目&#xff0c;特别是标准化的考试&#xff0c;比如全是选择或判断的题目&#xff0c;那就最大化地限制了答题…

整合Mybatis(Spring学习笔记十二)

一、导入相关的包 junit 包 Mybatis包 mysql数据库包 Spring相关的包 Aop相关的包 Mybatis-Spring包&#xff08;现在就来学这个&#xff09; 提示jdk版本不一致的朋友记得 jdk8只支持spring到5.x 所以如果导入的spring(spring-we…

Linux:进程终止和等待

一、进程终止 main函数的返回值也叫做进程的退出码&#xff0c;一般0表示成功&#xff0c;非零表示失败。我们也可以用不同的数字来表示不同失败的原因。 echo $?//打印最近一次进程执行的退出码 而作为程序猿&#xff0c;我们更需要知道的是错误码所代表的错误信息&#x…