RabbitMQ3.x之九_Docker中安装RabbitMQ

RabbitMQ3.x之_Docker中安装RabbitMQ

文章目录

  • RabbitMQ3.x之_Docker中安装RabbitMQ
  • 1. 官网
  • 2. 安装
    • 1 .拉取镜像
    • 2. 运行容器
  • 3. 访问

1. 官网

rabbitmq - Official Image | Docker Hub

2. 安装

1 .拉取镜像

docker pull rabbitmq:3.13.0-management

2. 运行容器

# latest RabbitMQ 3.13.0-management
docker run -d -it --rm --name rabbitmq --restart=always -p 5672:5672 -p 15672:15672 rabbitmq:3.13.0-management

3. 访问

  1. 浏览器输入地址: http://localhost:15672
  2. 在登录页输入默认的用户名密码:guest/guest

在这里插入图片描述

登录后如下

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/515474.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

从零起步:开启你的IT职业之旅

简介: 信息技术(IT)行业以其快速发展和广阔的就业前景吸引着全球众多职场新人。但对于零基础的求职者而言,挺进这一行业似乎是条充满挑战的道路。进入IT行业可能看起来是一项艰巨的挑战,尤其是对于那些没有任何相关经…

伪造靶机之iptables

伪造禁ping、网络不可达、主机不可达、协议、端口的命令 iptables -A INPUT -p icmp --icmp-type echo-request -j DROP iptables -A INPUT -s 172.18.6.89 -p icmp -j REJECT --reject-with icmp-net-unreachable iptables -A INPUT -s 172.18.6.89 -p icmp -j REJECT --re…

【Canavs与艺术】绘制蓝白绶带大卫之星勋章

【图例】 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>用Canvas绘制蓝白绶带大卫之星勋章</title><style type&quo…

Python如何解决“滑动拼图”验证码(8)

前言 本文是该专栏的第67篇,后面会持续分享python爬虫干货知识,记得关注。 做过爬虫项目的同学,或多或少都会接触到一些需要解决验证码才能正常获取数据的平台。 在本专栏之前的文章中,笔者有详细介绍通过python来解决多种“验证码”(点选验证,图文验证,滑块验证,滑块…

网络协议——VRRP(虚拟路由冗余协议)原理与配置

1. VRRP概述 单网关出现故障后下联业务中断&#xff0c;配置两个及以上的网关时由于IP地址冲突&#xff0c;导致通讯时断时续甚至通信中断。VRRP组播类的网络层协议 2. 协议版本 VRRP v2: 支持认证,仅适用于IPv4网络 VRRP v3: 不支持认证&#xff0c; 适用于IPv4和IPv6两种网…

【Leetcode笔记】102.二叉树的层序遍历

目录 知识点Leetcode代码&#xff1a;ACM模式代码&#xff1a; 知识点 vector、queue容器的操作 对vector<int> vec;做插入元素操作&#xff1a;vec.push_back(x)。对queue<TreeNode*> que;做插入元素操作&#xff1a;que.push(root);。队列有四个常用的操作&…

【Python系列】 yaml中写入数据

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

普联一面4.2面试记录

普联一面4.2面试记录 文章目录 普联一面4.2面试记录1.jdk和jre的区别2.java的容器有哪些3.list set map的区别4.get和post的区别5.哪个更安全6.java哪些集合类是线程安全的7.创建线程有哪几种方式8.线程的状态有哪几种9.线程的run和start的区别10.什么是java序列化11.redis的优…

深度解读DynamIQ架构cache的替换策略

快速链接: 【精选】ARMv8/ARMv9架构入门到精通-[目录] &#x1f448;&#x1f448;&#x1f448; 思考: 在经典的 DynamIQ架构 中&#xff0c;数据是什么时候存在L1 cache&#xff0c;什么时候存进L2 cache&#xff0c;什么时候又存进L3 cache&#xff0c;以及他们的替换策略是…

ArcGIS Pro导出布局时去除在线地图水印

目录 一、背景 二、解决方法 一、背景 在ArcGIS Pro中经常会用到软件自带的在线地图&#xff0c;但是在导出布局时&#xff0c;图片右下方会自带地图的水印 二、解决方法 解决方法&#xff1a;添加动态文本--服务图层制作者名单&#xff0c;然后在布局中选定位置添加 在状…

红蓝色WordPress外贸建站模板

红蓝色WordPress外贸建站模板 https://www.mymoban.com/wordpress/5.html

【Java】打包:JAR、EAR、WAR

打包&#xff1a;JAR、EAR、WAR war 是一个 Web 模块&#xff0c;其中需要包括 WEB-INF&#xff0c;是可以直接运行的 WEB 模块。而 jar 一般只是包括一些 class 文件&#xff0c;在声明了 main_class 之后是可以用 java 命令运行的。 它们都是压缩的包&#xff0c;拿 Tomcat …

LeetCode_234(回文链表)

//时间复杂度O(n) 空间复杂度O(1)public boolean isPalindrome(ListNode head) {ListNode fast head,slow head;while (fast !null && fast.next !null){fast fast.next.next;slow slow.next;}//如果链表是奇数个结点&#xff0c;把正中的归到左边if(fast ! null){s…

操作系统的信号量操作以及实战中的踩坑分析

往期地址&#xff1a; 操作系统系列一 —— 操作系统概述操作系统系列二 —— 进程操作系统系列三 —— 编译与链接关系操作系统系列四 —— 栈与函数调用关系操作系统系列五 —— 目标文件详解操作系统系列六 —— 详细解释【静态链接】操作系统系列七 —— 装载操作系统系列…

洛谷B3735题解

题目描述 圣诞树共有 n 层&#xff0c;从上向下数第 1 层有 1 个星星、第 2 层有 2 个星星、以此类推&#xff0c;排列成下图所示的形状。 星星和星星之间用绳子连接。第 1,2,⋯,n−1 层的每个星星都向下一层最近的两个星星连一段绳子&#xff0c;最后一层的相邻星星之间连一段…

【开发、测试】接口规范与测试

接口测试基础 url 是互联网标准资源地址&#xff0c;称为统一资源定位符 组成&#xff1a;协议&#xff0c;服务器地址&#xff0c;端口号 HTTP协议 HTTP&#xff1a;超文本传输协议&#xff0c;基于请求与响应的应用层协议 作用&#xff1a;规定了客户端和服务器之间的信…

Spring声明式事务以及事务传播行为

Spring声明式事务以及事务传播行为 Spring声明式事务1.编程式事务2.使用AOP改造编程式事务3.Spring声明式事务 事务传播行为 如果对数据库事务不太熟悉&#xff0c;可以阅读上一篇博客简单回顾一下&#xff1a;MySQL事务以及并发访问隔离级别 Spring声明式事务 事务一般添加到…

前端工程师————CSS学习

选择器分类 选择器分为基础选择器和复合选择器 基础选择器包括&#xff1a;标签选择器&#xff0c;类选择器&#xff0c;id选择器&#xff0c;通配符选择器标签选择器 类选择器 语法&#xff1a;.类名{属性1&#xff1a; 属性值&#xff1b;} 类名可以随便起 多类名使用方式&am…

LeetCode-98. 验证二叉搜索树【树 深度优先搜索 二叉搜索树 二叉树】

LeetCode-98. 验证二叉搜索树【树 深度优先搜索 二叉搜索树 二叉树】 题目描述&#xff1a;解题思路一&#xff1a;中序遍历解题思路二&#xff1a;0解题思路三&#xff1a;0 题目描述&#xff1a; 给你一个二叉树的根节点 root &#xff0c;判断其是否是一个有效的二叉搜索树…

【蓝桥杯练习】tarjan算法求解LCA

还是一道比较明显的求LCA(最近公共祖先)模型的题目,我们可以使用多种方法来解决该问题&#xff0c;这里我们使用更好写的离线的tarjan算法来解决该问题。 除去tarjan算法必用的基础数组&#xff0c;我们还有一个数组d[],d[i]记录的是每个点的出度&#xff0c;也就是它的延迟时间…