9.图像中值腐蚀膨胀滤波的实现

1 简介

  在第七章介绍了基于三种卷积前的图像填充方式,并生成了3X3的图像卷积模板,第八章运用这种卷积模板进行了均值滤波的FPGA实现与MATLAB实现,验证了卷积模板生成的正确性和均值滤波算法的MATLAB算法实现。
  由于均值滤波、中值滤波、腐蚀、膨胀都依赖与卷积核且实现较为简单,这里将对剩下的三种图像处理方式一起介绍。

2 处理前图像的生成。

  由于在第八章的中值滤波的试验需要放大观察,且去噪效果几乎看不到,这里我们先对灰度图添加随机的椒盐噪声,并利用添加椒盐噪声后的图像做数字图像处理的FPGA算法实现以及MATLAB算法验证。这样可以方便观察图像处理前后的差异。
  对图像随机添加椒盐噪声的MATLAB代码如下:

clear;
clc;
close all;
a = imread('../img/1920X1080_gray.bmp');
subplot(1,2,1),imshow(a),title('原图');

b=imnoise(a,'salt & pepper',0.01);
subplot(1,2,2),imshow(b),title('加入噪声密度:0.01的椒盐噪声');

imwrite(b,'../img/gray.bmp');

  添加前后的图像对比如下:
在这里插入图片描述
  可以看到图像现在有了一定数量的噪点。后续的图像处理均以添加椒盐噪声后的图像作为原始图像来处理。

3 三种算法的FPGA实现与MATLAB验证

3.1 中值滤波

  中值滤波是一种非线性的滤波方式,是一种排序滤波,它将图像的某一个像素点的灰度值设置成该点某一邻域窗口内所有像素点灰度值排序后的中值。
  中值滤波对孤立的噪点像素即椒盐噪声具有良好的滤波效果,且不同于均值滤波对图像边缘性的破坏,中值滤波不会显著性的使图像边缘变得模糊。
  1.用一个模板来移动窗口,并将模板中心与图中的某个像素位置重合;
  2.读取模板的像素值并按照大小进行排序;
  3.选取灰度序列中,最中间的一个灰度值;
  4.将灰度值赋值给模板中间的像素;

3.2 3X3模板的中值滤波的FPGA算法实现简介

  在3X3的卷积模板中,找出中值共需要经历七次排序。
  1.前三次排序分别对3X3模板的三行进行排序,得到min、mid、max。
  2.后三次排序在三个最小值中找出一个最大值,三个中值中找出一个中值,三个最大值中找出一个最小值。
  3.在步骤二找出的三个值中找出中值,这个值即为最终需要赋值的像数值。
中值滤波算法框图

3.2.1 sort_3模块

  由于3X3卷积模板中值滤波共需要经过七次三个数的排序,因此首先需要创建一个排序模块供中值滤波模块调用。三个数的排序模块代码如下:

`timescale 1ns / 1ps

module sort_3 #(
	parameter 	DW 	= 	8 				
	)(
 	input 	wire 				clk 		,
 	input 	wire  				rst_n 		,
 	input 	wire 				data_de 	,
 	input 	wire  	[DW-1:0]	data1 		,
  	input 	wire  	[DW-1:0]	data2 		,
 	input 	wire  	[DW-1:0]	data3 		,

 	output 	reg 				data_out_de ,
 	output 	reg 	[DW-1:0] 	min_data 	,
 	output 	reg 	[DW-1:0] 	mid_data 	, 
 	output 	reg 	[DW-1:0] 	max_data 				
);

always @(posedge clk)
	if(rst_n == 0)
		min_data 	<= 	0;
	else if(data1 <= data2 && data1 <= data3)
		min_data 	<= 	data1 	;
	else if(data2 <= data1 && data2 <= data3)
	 	min_data 	<= 	data2 	;
	else
	 	min_data 	<= 	data3 	; 

always @(posedge clk)
	if(rst_n == 0)
		mid_data 	<= 	0;
	else if((data1 <= data2 && data1 >= data3) || (data1 >= data2 && data1 <= data3))
		mid_data 	<= 	data1 	;
	else if((data2 <= data1 && data2 >= data3) || (data2 >= data1 && data2 <= data3))
	 	mid_data 	<= 	data2 	;
	else
	 	mid_data 	<= 	data3 	;

always @(posedge clk)
	if(rst_n == 0)
		max_data 	<= 	0;
	else if(data1 >= data2 && data1 >= data3)
		max_data 	<= 	data1 	;
	else if(data2 >= data1 && data2 >= data3)
	 	max_data 	<= 	data2 	;
	else
	 	max_data 	<= 	data3 	;

always @(posedge clk)
	if(rst_n == 0)
		data_out_de 	<= 	0;
	else
	 	data_out_de 	<= 	data_de;
endmodule

3.2.2 中值滤波模块

  中值滤波本身就是一种排序算法,只需要多次三个数的排序即可完成,因此此算法模块内部就是sort_3模块的例化与连接,代码如下:

`timescale 1ns / 1ps

module mid_filter#(
    parameter DW = 8
)(
    input   wire                clk         ,
    input   wire                rst_n       ,

    input   wire                matrix_de   ,
    input   wire    [DW-1:0]    matrix11    ,
    input   wire    [DW-1:0]    matrix12    ,
    input   wire    [DW-1:0]    matrix13    ,
    input   wire    [DW-1:0]    matrix21    ,
    input   wire    [DW-1:0]    matrix22    ,
    input   wire    [DW-1:0]    matrix23    ,
    input   wire    [DW-1:0]    matrix31    ,
    input   wire    [DW-1:0]    matrix32    ,
    input   wire    [DW-1:0]    matrix33    ,

    output  wire                mid_data_de ,
    output  wire    [DW-1:0]    mid_data 
    );
wire  					matrix1_de 		;
wire  	[DW-1:0] 		min_data1 		;
wire  	[DW-1:0] 		mid_data1 		;
wire  	[DW-1:0] 		max_data1 		;

wire  					matrix2_de 		;
wire  	[DW-1:0] 		min_data2 		;
wire  	[DW-1:0] 		mid_data2 		;
wire  	[DW-1:0] 		max_data2 		;

wire  					matrix3_de 		;
wire  	[DW-1:0] 		min_data3 		;
wire  	[DW-1:0] 		mid_data3 		;
wire  	[DW-1:0] 		max_data3 		;

wire 					matrix4_de 		;
wire 	[DW-1:0] 		max_min_data	;

wire 					matrix5_de 		;
wire 	[DW-1:0] 		mid_mid_data	; 

wire 					matrix6_de 		;
wire 	[DW-1:0] 		min_max_data	;	

wire 					matrix7_de 		;
wire 	[DW-1:0] 		mid_filter_data	;	

sort_3 #(
	.DW 	(DW) 				
)u1_sort_3(
 	.clk 			(clk 			),
 	.rst_n 			(rst_n 			),
 	.data_de 		(matrix_de 		),
 	.data1 			(matrix11    	),
  	.data2 			(matrix12    	),
 	.data3 			(matrix13    	),

 	.data_out_de 	(matrix1_de 	),
 	.min_data 		(min_data1 		),
 	.mid_data 		(mid_data1 		), 
 	.max_data 		(max_data1 		)	
);

sort_3 #(
	.DW 	(DW) 				
)u2_sort_3(
 	.clk 			(clk 			),
 	.rst_n 			(rst_n 			),
 	.data_de 		(matrix_de 		),
 	.data1 			(matrix21    	),
  	.data2 			(matrix22    	),
 	.data3 			(matrix23    	),

 	.data_out_de 	(matrix2_de 	),
 	.min_data 		(min_data2 		),
 	.mid_data 		(mid_data2 		), 
 	.max_data 		(max_data2 		)	
);

sort_3 #(
	.DW 	(DW) 				
)u3_sort_3(
 	.clk 			(clk 			),
 	.rst_n 			(rst_n 			),
 	.data_de 		(matrix_de 		),
 	.data1 			(matrix31    	),
  	.data2 			(matrix32    	),
 	.data3 			(matrix33    	),

 	.data_out_de 	(matrix3_de 	),
 	.min_data 		(min_data3 		),
 	.mid_data 		(mid_data3 		), 
 	.max_data 		(max_data3 		)	
);





sort_3 #(
	.DW 	(DW) 				
)u4_sort_3(
 	.clk 			(clk 			),
 	.rst_n 			(rst_n 			),
 	.data_de 		(matrix1_de 	),
 	.data1 			(max_data1    	),
  	.data2 			(max_data2    	),
 	.data3 			(max_data3    	),

 	.data_out_de 	(matrix4_de 	),
 	.min_data 		(max_min_data 	),
 	.mid_data 		( 				), 
 	.max_data 		( 				)	
);

sort_3 #(
	.DW 	(DW) 				
)u5_sort_3(
 	.clk 			(clk 			),
 	.rst_n 			(rst_n 			),
 	.data_de 		(matrix1_de 	),
 	.data1 			(mid_data1    	),
  	.data2 			(mid_data2    	),
 	.data3 			(mid_data3    	),

 	.data_out_de 	(matrix5_de 	),
 	.min_data 		( 			 	),
 	.mid_data 		(mid_mid_data 	), 
 	.max_data 		( 				)	
);

sort_3 #(
	.DW 	(DW) 				
)u6_sort_3(
 	.clk 			(clk 			),
 	.rst_n 			(rst_n 			),
 	.data_de 		(matrix1_de 	),
 	.data1 			(min_data1    	),
  	.data2 			(min_data2    	),
 	.data3 			(min_data3    	),

 	.data_out_de 	(matrix6_de 	),
 	.min_data 		( 			 	),
 	.mid_data 		(min_max_data 	), 
 	.max_data 		( 				)	
);




sort_3 #(
	.DW 	(DW) 				
)u7_sort_3(
 	.clk 			(clk 			),
 	.rst_n 			(rst_n 			),
 	.data_de 		(matrix4_de 	),
 	.data1 			(max_min_data   ),
  	.data2 			(mid_mid_data   ),
 	.data3 			(min_max_data   ),

 	.data_out_de 	(matrix7_de 	),
 	.min_data 		( 			 	),
 	.mid_data 		(mid_filter_data), 
 	.max_data 		( 				)	
);

assign mid_data 	= mid_filter_data	;
assign mid_data_de 	= matrix7_de		;

endmodule

  例化后用vivado查看连线有
在这里插入图片描述

3.2.3 中值滤波的顶层连接

`timescale 1ns / 1ps
module top_mid_filter#(
    parameter COL       = 1920  ,
    parameter ROW       = 1080  ,
    parameter PADDING   = 2     ,
    parameter DW        = 8     
)(
    input   wire                clk             ,
    input   wire                rst_n           ,
    input   wire                data_de         ,
    input   wire    [DW-1:0]    data            ,
    output  wire                mid_data_de     ,
    output  wire    [DW-1:0]    mid_data          
);

wire    [DW-1:0]      matrix11    ;
wire    [DW-1:0]      matrix12    ;
wire    [DW-1:0]      matrix13    ;
wire    [DW-1:0]      matrix21    ;
wire    [DW-1:0]      matrix22    ;
wire    [DW-1:0]      matrix23    ;
wire    [DW-1:0]      matrix31    ;
wire    [DW-1:0]      matrix32    ;
wire    [DW-1:0]      matrix33    ;    

padding_matrix #(
	.COL 	    (COL        ),
	.ROW 	    (ROW        ),
	.PADDING    (PADDING    )
)u_padding_matrix(
 	.clk 		    (clk 		    ),
 	.rst_n 		    (rst_n 		    ),

 	.data 		    (data 		    ),
 	.data_de 	    (data_de 	    ), 

 	.matrix_de 	    (matrix_de 	    ),
 	.matrix11 	    (matrix11 	    ),
 	.matrix12 	    (matrix12 	    ),
 	.matrix13 	    (matrix13 	    ),
 	.matrix21 	    (matrix21 	    ),
 	.matrix22 	    (matrix22 	    ),
 	.matrix23 	    (matrix23 	    ),
 	.matrix31 	    (matrix31 	    ),
 	.matrix32 	    (matrix32 	    ),
 	.matrix33 	    (matrix33 	    )
);

mid_filter #(
    .DW         (DW)
)u_mid_filter(
    .clk            (clk            ),
    .rst_n          (rst_n          ),

    .matrix_de      (matrix_de      ),
    .matrix11       (matrix11       ),
    .matrix12       (matrix12       ),
    .matrix13       (matrix13       ),
    .matrix21       (matrix21       ),
    .matrix22       (matrix22       ),
    .matrix23       (matrix23       ),
    .matrix31       (matrix31       ),
    .matrix32       (matrix32       ),
    .matrix33       (matrix33       ),

    .mid_data_de    (mid_data_de    ),
    .mid_data       (mid_data       )
    );
endmodule

  例化后用vivado查看连线有
在这里插入图片描述

3.3 中值滤波的FPGA仿真

  仿真依旧是img_gen模块读取pre.txt的像素数据,tb顶层写回仿真后的像素数据到mid_filter.txt文本。

`timescale 1ns / 1ps

module img_gen
#(
 	parameter 	ACTIVE_IW 	= 	1920 	,
 	parameter 	ACTIVE_IH 	= 	1080 	,
 	parameter 	TOTAL_IW 	= 	2200 	,
 	parameter 	TOTAL_IH 	= 	1100 	,
 	parameter 	H_START 	= 	100 	,
 	parameter 	V_START 	= 	4 		 		
)(
	input 	wire 				clk 	,
	input 	wire 				rst_n 	,
	output 	reg 				vs 		,
	output 	reg  	 	 		de 		,
	output 	reg 	[7:0] 		data 	
);

reg  	[7:0] 	raw_array 	 [ACTIVE_IW*ACTIVE_IH-1:0];

integer i;
initial begin
	for (i=0 ;i<ACTIVE_IH*ACTIVE_IW ; i=i+1) begin
		raw_array[i] = 0;
	end
end

initial begin
	$readmemh("H:/picture/Z7/lesson8/data/pre.txt",raw_array);
end

reg 	[15:0] 	hcnt 	;
reg 	[15:0] 	vcnt 	;

reg 			h_de 	;
reg 			v_de  	;

reg  			index_de 	;
reg 	[31:0] 	index 	 	;

always @(posedge clk or negedge rst_n)
	if(!rst_n)
		hcnt <= 'd0;
	else if(hcnt == TOTAL_IW - 1)
		hcnt <= 'd0;
	else 
		hcnt <= hcnt + 1'b1;

always @(posedge clk or negedge rst_n)
	if(!rst_n)
		vcnt <= 'd0;
	else if(hcnt == TOTAL_IW - 1 && vcnt == TOTAL_IH - 1)
		vcnt <= 'd0;
	else if(hcnt == TOTAL_IW - 1)
		vcnt <= vcnt + 1'b1;
	else 
		vcnt <= vcnt;

always @(posedge clk or negedge rst_n)
	if(!rst_n)
		vs <= 'd0;
	else if(vcnt>=2)
		vs <= 1'b1;
	else 
		vs <= 1'b0;

always @(posedge clk or negedge rst_n)
	if(!rst_n)
		h_de <= 'd0;
	else if(hcnt >= H_START && hcnt < H_START + ACTIVE_IW)
		h_de <= 1'b1;
	else 
		h_de <= 1'b0;

always @(posedge clk or negedge rst_n)
	if(!rst_n)
		v_de <= 'd0;
	else if(vcnt >= V_START && vcnt < V_START + ACTIVE_IH)
		v_de <= 1'b1;
	else 
		v_de <= 1'b0;


always @(posedge clk or negedge rst_n)
	if(!rst_n)
		index_de <= 'd0;
	else if(h_de == 1'b1 && v_de == 1'b1)
		index_de <= 1'b1;
	else 
		index_de <= 1'b0;

always @(posedge clk or negedge rst_n)
	if(!rst_n)
		index <= 'd0;
	else if(index == ACTIVE_IW * ACTIVE_IH-1)
		index <= 0;
	else if(index_de == 1'b1)
		index <= index + 1;
	else 
		index <= index;

always @(posedge clk or negedge rst_n)
	if(!rst_n)
		de <= 'd0;
	else 
		de <= index_de;

always @(posedge clk or negedge rst_n)begin
	if(index_de == 1'b1)
		data 	<= 	raw_array[index];
	else 
		data 	<= 0;
end
endmodule

`timescale 1ns / 1ps



module tb_top_mid_filter(

    );

reg 	clk 	;
reg 	rst_n 	;

wire 	[7:0] 	data 	;
wire 			de  	;

wire 			vs  	;

wire    [7:0]   mid_data;
wire            mid_data_de;
	
integer 	outfile;
always #5 clk 	<= 	~clk;
initial 	begin
	clk 	<= 0;
	rst_n 	= 0;
	#100
	rst_n 	= 1;
	outfile = $fopen("H:/picture/Z7/lesson8/data/mid_filter.txt","w");
end

img_gen
#(
 	.ACTIVE_IW 	(1920 	),
 	.ACTIVE_IH 	(1080 	),
 	.TOTAL_IW 	(2200 	),
 	.TOTAL_IH 	(1100 	),
 	.H_START 	(4 	 	),
 	.V_START 	(4 	 	) 		
)u_img_gen(
	.clk 	 	(clk 	 	),
	.rst_n 	 	(rst_n 	 	),
	.vs 		(vs 		),
	.de 		(de 		),
	.data 	 	(data 	 	)
);

top_mid_filter#(
    .COL       ( 1920  ),
    .ROW       ( 1080  ),
    .PADDING   ( 2     ),
    .DW        ( 8     )
)u_top_mid_filter(
    .clk            (clk            ),
    .rst_n          (rst_n          ),
    .data_de        (de             ),
    .data           (data           ),
    .mid_data_de    (mid_data_de    ),
    .mid_data       (mid_data       )  
);

reg 	vs_r 	;

always @(posedge clk)
	if(rst_n == 0)
		vs_r 	<= 1'b0;
	else 
		vs_r 	<= vs;

always @(posedge clk)
	if(~vs&&vs_r)
		$stop;
	else if(mid_data_de)
 		$fdisplay(outfile,"%h\t",mid_data);		

endmodule

3.3 中值滤波的MATLAB算法实现与验证

  中值滤波的MATLAB算法实现如下:

clc;
clear all;
GRAY = imread('../img/gray.bmp');
[row,col] = size(GRAY);
GRAY = double(GRAY);
mid_filter_padding = zeros(row+2,col+2);
mid_filter_result  =   zeros(row,col);
for i = 1:row
    for j = 1:col
        mid_filter_padding(i+1,j+1) = GRAY(i,j);
    end
end

for i = 1:row+2
    mid_filter_padding(i,1) = mid_filter_padding(i,2);
    mid_filter_padding(i,col+2) = mid_filter_padding(i,col+1);
end

for i = 1:col+2
   mid_filter_padding(1,i) = mid_filter_padding(2,i);
   mid_filter_padding(row+2,i) = mid_filter_padding(row+1,i);
end

for i = 2:row+1
    for j = 2:col+1
        matrix11 = mid_filter_padding(i-1,j-1);
        matrix12 = mid_filter_padding(i-1,j);
        matrix13 = mid_filter_padding(i-1,j+1);
        
        matrix21 = mid_filter_padding(i,j-1);
        matrix22 = mid_filter_padding(i,j);
        matrix23 = mid_filter_padding(i,j+1);
        
        matrix31 = mid_filter_padding(i+1,j-1);
        matrix32 = mid_filter_padding(i+1,j);
        matrix33 = mid_filter_padding(i+1,j+1); 

        sort_buf = sort([matrix11,matrix12,matrix13,matrix21,matrix22,matrix23,matrix31,matrix32,matrix33],'ascend');

        mid_filter_result(i-1,j-1) = sort_buf(1,5);
    end
end
matlab_Y = uint8(floor(mid_filter_result));

a = textread('../data/mid_filter.txt','%s');
IMdec1 = hex2dec(a);

col = 1920;
row = 1080;

IM1 = reshape(IMdec1,col,row);
fpga_Y = uint8(IM1)';

b = textread('../data/pre.txt','%s');
IMdec2 = hex2dec(b);

col = 1920;
row = 1080;

IM2 = reshape(IMdec2,col,row);
gray = uint8(IM2)';

subplot(1,3,1)
imshow(gray),title('原始图像');
subplot(1,3,2)
imshow(matlab_Y),title('MATLAB中值滤波算法图像');
subplot(1,3,3)
imshow(fpga_Y),title('FPGA中值滤波算法图像');

sub = matlab_Y - fpga_Y;

min_sub = min(min(sub));
max_sub = max(max(sub));

在这里插入图片描述
  MATLAB算法实现与FPGA仿真结果完全一致,验证通过。由于在添加椒盐噪声的时候,添加的是孤立的噪声点,完美符合中值滤波算法,所以还原效果最好,但是当椒盐噪声的像素点过多的时候,中值滤波需要更大的卷积模板,且也会一定程度的使边缘模糊。

3.2 腐蚀与膨胀滤波

  中值滤波是取卷积模板的中位数做滤波算法,但是当单个椒盐噪点的面积过大时,此算法并不适用,腐蚀算法就是取卷积模板的最小值,膨胀就是取卷积模板的最大值。因此只需要在中值滤波的基础上改变卷积的连线即可。腐蚀和膨胀经常成对的使用,具体使用方式可以参考图像的膨胀与腐蚀这篇文章。
  这里只分别贴出对图像进行腐蚀和膨胀的处理前后效果图。
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/515046.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Flask Python:如何获取不同请求方式的参数

目录 前言 1. 获取GET请求中的查询参数 2. 获取POST请求中的表单数据 3. 获取JSON数据 总结 前言 在使用Flask开发Web应用时&#xff0c;我们经常需要获取不同请求方式的参数。Flask提供了多种方式来获取不同请求方式的参数&#xff0c;包括GET请求中的查询参数、POST请求…

Spring Boot Mockito (二)

Spring Boot Mockito (二) 基于第一篇Spring Boot Mockito (一) 这篇文章主要是讲解Spring boot 与 Mockito 集成持久层接口层单元测试。 1. 引入数据库 h2及其依赖包 <dependency><groupId>com.h2database</groupId><artifactId>h2</artifactId…

JavaScript基础代码练习之冒泡排序

一、要求对一个数组进行冒泡排序&#xff0c;并将排序后的结果输出到控制台。在代码中&#xff0c;数组 arr 包含了一组数字&#xff0c;然后使用嵌套的循环来进行冒泡排序。 二、编写代码 <!DOCTYPE html> <html lang"en"><head><meta chars…

NOI - OpenJudge - 2.5基本算法之搜索 - 1490:A Knight‘s Journey - 超详解析(含AC代码)

点赞关注吧~ 1490:A Knights Journey 查看提交统计提问 总时间限制: 1000ms 内存限制: 65536kB 描述 Background The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey around the world. When…

《QT实用小工具·九》设备按钮控件

1、概述 源码放在文章末尾 该项目实现了设备按钮控件&#xff0c;主要包含如下功能&#xff1a; 可设置按钮样式 圆形、警察、气泡、气泡2、消息、消息2。可设置按钮颜色 布防、撤防、报警、旁路、故障。可设置报警切换及对应报警切换的颜色。可设置显示的防区号。可设置是否…

实验报告答案

基本任务&#xff08;必做&#xff09; 先用普通用户&#xff08;自己的姓名拼音&#xff09;登录再操作 编程有代码截图和执行过程结果截图 代写获取&#xff1a; https://laowangall.oss-cn-beijing.aliyuncs.com/studentall.pdf 1. Linux的Shell编程 &#xff08;1&am…

实操:Dropzone.js实现文件上传

&#x1f3e0;官网 点我前往 &#x1f953;依赖 <script src"https://unpkg.com/dropzone5/dist/min/dropzone.min.js"></script> <link rel"stylesheet" href"https://unpkg.com/dropzone5/dist/min/dropzone.min.css" type&…

unity工程输出的log在哪里?

在编辑器里进行活动输出的log位置&#xff1a; C:\Users\username\AppData\Local\Unity\Editor\Editor.log ------------------------------------ 已经打包完成&#xff0c;形成的exe运行后的log位置&#xff1a; C:\Users\xxx用户\AppData\LocalLow\xx公司\xx项目

【Qt】事件

目录 一、介绍 二、进入离开事件 三、鼠标事件 3.1 鼠标单击事件 3.2 鼠标释放事件 3.3 鼠标双击事件 3.4 鼠标移动事件 3.5 滚轮事件 四、按键事件 4.1 单个按键 4.2 组合按键 五、定时器 5.1 QTimerEvent类 5.2 QTimer类 5.3 获取系统日期及时间 六、事件分…

【游戏逆向】逆向基础----CE使用和基础

windows逆向中&#xff0c;CE扮演着不可或缺的角色。 其根本原因是&#xff0c;上手简单,功能强大&#xff0c;提供多方位的突破口。 点击小电脑图标&#xff0c; 选择我们想要调试的程序&#xff0c; 就可以附加调试了。 很多的游戏保护驱动以及反调试手段&#xff0c;都针对…

澳门媒体发稿套餐9个增长技巧解析-华媒舍

澳门作为一个国际知名的旅游胜地&#xff0c;拥有丰富的媒体资源。利用澳门媒体发稿&#xff0c;既可以提升品牌知名度&#xff0c;又可以吸引更多的目标受众。下面是9个利用澳门媒体发稿套餐的增长技巧&#xff0c;帮助你充分发挥媒体的作用&#xff0c;实现品牌的增长。 1. 制…

机器学习的模型校准

背景知识 之前一直没了解过模型校准是什么东西&#xff0c;最近上班业务需要看了一下&#xff1a; 模型校准是指对分类模型进行修正以提高其概率预测的准确性。在分类模型中&#xff0c;预测结果通常以类别标签形式呈现&#xff08;例如&#xff0c;0或1&#xff09;&#xf…

注意力机制篇 | YOLOv8改进之添加LSKAttention大核卷积注意力机制 | 即插即用,实现有效涨点

前言:Hello大家好,我是小哥谈。LSKAttention是一种注意力机制,它在自然语言处理领域中被广泛应用。LSKAttention是基于Transformer模型中的Self-Attention机制进行改进的一种变体。在传统的Self-Attention中,每个输入序列中的元素都会与其他元素进行交互,以获取全局的上下…

Linux 命令 top 详解

1 top命令介绍 Linux系统中&#xff0c;Top命令主要用于实时运行系统的监控&#xff0c;包括Linux内核管理的进程或者线程的资源占用情况。这个命令对所有正在运行的进程和系统负荷提供不断更新的概览信息&#xff0c;包括系统负载、CPU利用分布情况、内存使用、每个进程的内容…

开源量化交易研究框架Hikyuu

Hikyuu Quant Framework 是一款基于 C/Python 的开源量化交易研究框架&#xff0c;用于策略分析及回测。其核心思想基于当前成熟的系统化交易方法&#xff0c;将整个系统化交易抽象为由市场环境判断策略、系统有效条件、信号指示器、止损 / 止盈策略、资金管理策略、盈利目标策…

分享three.js实现粒子背景

three.js中粒子效果的实现方式大概分为三种&#xff1a; 1、Javascript直接计算粒子的状态变化&#xff0c;即基于CPU实现&#xff1b; 2、Javascript通知顶点着色器粒子的生命周期&#xff0c;由顶点着色器运行&#xff0c;即基于GPU实现&#xff1b; 3、粒子生成与状态维护全…

QT实现NTP功能

一.NTP基础 1.NTP定义 NTP&#xff08;Network Time Protocol&#xff0c;网络时间协议&#xff09;是由RFC 1305定义的时间同步协议&#xff0c;用于分布式设备&#xff08;比如电脑、手机、智能手表等&#xff09;进行时间同步&#xff0c;避免人工校时的繁琐和由此引入的误…

【漏洞复现】极简云 download.php 接口处存在任意文件读取漏洞

免责声明&#xff1a;文章来源互联网收集整理&#xff0c;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;所产生的一切不良后果与文章作者无关。该…

什么是线程安全、怎么保证线程安全

目录 什么是线程安全 多线程编程中的三个核心概念 JMM内存模型 JMM内存模型怎么实现原子性、可见性 怎么保证线程安全 什么是线程安全 当多个线程访问一个对象时&#xff0c;如果不用考虑这些线程在运行时环境下的调度和交替执行&#xff0c;也不需要进行额外的同步&#x…

Rust---复合数据类型之结构体

目录 结构体的使用输出结果 结构体简化创建结构体更新语法元组结构体单元结构体&#xff08;unit struct&#xff09;结构体中的引用使用#[derive(Debug)]再次介绍 代码综合展示 与元组不同的是&#xff0c;结构体可以为内部的每个字段起一个富有含义的名称&#xff0c;因此无需…