[Arduino学习] ESP8266读取DHT11数字温湿度传感器数据

目录

1、传感器介绍

2、接线

3、DHT.h库


1、传感器介绍

        DHT11数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传感器,是简单环境监测项目的理想选择。

        温度分辨率为1ºC,相对湿度为1%。温度范围在0ºC到50ºC之间,湿度的测量范围取决于温度。

2、接线

下面是开发板原理图,DHT11接在外设接口上,传感器数据可以通过GPIO5获取。

读取DHT11,采用的DHT sensor library库

       接线注意:根据资料显示传感器可以接在ESP8266的引脚GPIO3、4、5、12、13或14、15,等引脚,这里是ESP8266的,不是D3,D4,这个和厂家有关系,不同模组不一样。

        重点注意的是:传感器接GPIO15引脚时,上传程序时必须断开DHT。否则无法上传程序。同时GPIO16和AO引脚也无法正常

3、DHT.h库

该库有两个示例文件,

库文件解释

        该示例程序 两秒获取刷新一次数据,推荐用下面这个,已测试ok

#include "DHT.h"
#define DHTPIN 2    // 连接到DHT传感器的数字引脚
//#define DHTTYPE DHT11   // DHT 11
#define DHTTYPE DHT22   // DHT 22  (AM2302), AM2321
//#define DHTTYPE DHT21   // DHT 21 (AM2301)
DHT dht(DHTPIN, DHTTYPE);
void setup() {
  Serial.begin(9600);
  Serial.println(F("DHTxx test!"));

  dht.begin();
}

void loop() {
  delay(2000);

  // 读取温度或湿度大约需要250毫秒!
  float h = dht.readHumidity();
  // 读取温度为摄氏度(默认值)
  float t = dht.readTemperature();
  // 将温度读取为华氏度(isFahrenheight=true)
  float f = dht.readTemperature(true);

  // 检查是否有任何读取失败,并提前退出(重试)。
  if (isnan(h) || isnan(t) || isnan(f)) {
    Serial.println(F("从DHT传感器读取失败!"));
    return;
  }

  // 以华氏度为单位计算热指数(默认值)
  //float hif = dht.computeHeatIndex(f, h);
  // 以摄氏度为单位计算热指数(isFahreheit=false)
 // float hic = dht.computeHeatIndex(t, h, false);

  Serial.print(F("Humidity: "));
  Serial.print(h);
  Serial.print(F("%  Temperature: "));
  Serial.print(t);
  Serial.printLN(F("°C "));
 // Serial.print(f);
 // Serial.print(F("°F  Heat index: "));
 // Serial.print(hic);
 // Serial.print(F("°C "));
 // Serial.print(hif);
// Serial.println(F("°F"));
}

注意:

1、F() 宏包裹起来,可以节省微控制器的内存空间。例如,F("Humidity: ") 会将 "Humidity: " 字符串会存储在程序的 Flash 存储器中,而不是 RAM.

2、上面将计算热指数的注释掉了,如果需要计算热指数,删除注释,Serial.printLN(F("°C ")这里采用换行,需要取消换行使用Serial.print

                下面这个可以根据传感器详细信息设置传感器读数之间的延迟.

#include <Adafruit_Sensor.h>
#include <DHT.h>
#include <DHT_U.h>

#define DHTPIN 2  //连接到DHT传感器的数字引脚  
// 定义正在使用的传感器类型:
//#define DHTTYPE    DHT11     // DHT 11
#define DHTTYPE    DHT22     // DHT 22 (AM2302)
//#define DHTTYPE    DHT21     // DHT 21 (AM2301)

DHT_Unified dht(DHTPIN, DHTTYPE);

uint32_t delayMS;

void setup() {
  Serial.begin(9600);
  // 串口波特率.
  dht.begin();
  Serial.println(F("DHTxx Unified Sensor Example"));
  // 打印温度传感器详细信息.
  sensor_t sensor;
  dht.temperature().getSensor(&sensor);
  Serial.println(F("------------------------------------"));
  Serial.println(F("Temperature Sensor"));
  Serial.print  (F("Sensor Type: ")); Serial.println(sensor.name);
  Serial.print  (F("Driver Ver:  ")); Serial.println(sensor.version);
  Serial.print  (F("Unique ID:   ")); Serial.println(sensor.sensor_id);
  Serial.print  (F("Max Value:   ")); Serial.print(sensor.max_value); Serial.println(F("°C"));
  Serial.print  (F("Min Value:   ")); Serial.print(sensor.min_value); Serial.println(F("°C"));
  Serial.print  (F("Resolution:  ")); Serial.print(sensor.resolution); Serial.println(F("°C"));
  Serial.println(F("------------------------------------"));
  // 打印湿度传感器详细信息
  dht.humidity().getSensor(&sensor);
  Serial.println(F("Humidity Sensor"));
  Serial.print  (F("Sensor Type: ")); Serial.println(sensor.name);
  Serial.print  (F("Driver Ver:  ")); Serial.println(sensor.version);
  Serial.print  (F("Unique ID:   ")); Serial.println(sensor.sensor_id);
  Serial.print  (F("Max Value:   ")); Serial.print(sensor.max_value); Serial.println(F("%"));
  Serial.print  (F("Min Value:   ")); Serial.print(sensor.min_value); Serial.println(F("%"));
  Serial.print  (F("Resolution:  ")); Serial.print(sensor.resolution); Serial.println(F("%"));
  Serial.println(F("------------------------------------"));
  // 根据传感器详细信息设置传感器读数之间的延迟.
  delayMS = sensor.min_delay / 1000;。
}

void loop() {
  // Delay between measurements.
  delay(delayMS);
  // 获取温度事件并打印其值。
  sensors_event_t event;
  dht.temperature().getEvent(&event);
  if (isnan(event.temperature)) {
    Serial.println(F("Error reading temperature!"));
  }
  else {
    Serial.print(F("Temperature: "));
    Serial.print(event.temperature);
    Serial.println(F("°C"));
  }
  // 获取湿度事件并打印其值.
  dht.humidity().getEvent(&event);
  if (isnan(event.relative_humidity)) {
    Serial.println(F("Error reading humidity!"));
  }
  else {
    Serial.print(F("Humidity: "));
    Serial.print(event.relative_humidity);
    Serial.println(F("%"));
  }
}

4、测试

        测试采用官方示例的第一种方法获取的,数据获取正常,两秒数据刷新一次。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/514972.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

自注意力机制详解

视频链接&#xff1a;李宏毅 self-attention讲解上 参考文章&#xff1a;RNN详解      Attention详解      彻底搞懂Attention机制      知乎Transformer详解 传统的编码器解码器架构 一般最简单的编码器-解码器架构都是基于RNN模型的&#xff0c;编码器将输入…

突破校园网限速:使用 iKuai 多拨分流负载均衡(内网带宽限制通用)

文章目录 1. 简介2. iKuai 部署2.1 安装 VMware2.2 安装 iKuai(1) 下载固件(2) 安装 iKuai 虚拟机(3) 配置 iKuai 虚拟机(4) 配置 iKuai(5) 配置多拨分流 2.3 测试速度 1. 简介 由于博主连的内网是限速的&#xff0c;但是不同设备之间的网速却始终差不多&#xff0c;有一天看着…

CSS3新增的语法(三)【2D,3D,过渡,动画】

CSS3新增的语法&#xff08;三&#xff09;【2D,3D,过渡&#xff0c;动画】 10.2D变换10.1. 2D位移10.2. 2D缩放10.3. 2D旋转10.4. 2D扭曲&#xff08;了解&#xff09;10.5. 多重变换10.6. 变换原点 11. 3D变换11.1. 开启3D空间11.2. 设置景深11.3. 透视点位置11.4. 3D 位移11…

R语言中的常用数据结构

目录 R对象的基本类型 R对象的属性 R的数据结构 向量 矩阵 数组 列表 因子 缺失值NA 数据框 R的数据结构总结 R语言可以进行探索性数据分析&#xff0c;统计推断&#xff0c;回归分析&#xff0c;机器学习&#xff0c;数据产品开发 R对象的基本类型 R语言对象有五…

使用OMP复原一维信号(MATLAB)

参考文献 https://github.com/aresmiki/CS-Recovery-Algorithms/tree/master MATLAB代码 %% 含有噪声 % minimize ||x||_1 % subject to: (||Ax-y||_2)^2<eps; % minimize : (||Ax-y||_2)^2lambda*||x||_1 % y传输中可能含噪 yyw % %% clc;clearvars; close all; %% 1.构…

js类型转换

类型转换只有这四种&#xff0c;例如如果要对象转数字&#xff0c;那么就需要先把对象转成原始类型&#xff0c;再从原始类型转到数字。 空数组转原始类型是一个空字符串。空对象转原始类型是[object Object]。 let a {} console.log(a);// NaN //等价于 a->原始 然后原始…

线控悬架系统分析

线控悬架系统分析 附赠自动驾驶学习资料和量产经验&#xff1a;链接 1 线控悬架系统系统发展现状 • 车辆驾乘过程中&#xff0c;操控性和舒适性是两个重要的评价指标&#xff0c;两者很难兼顾&#xff1b; • 线控悬架就是根据路况实际情况自动调节悬架的高度、刚度、阻尼实…

OpenHarmony实战:小型系统移植概述

驱动主要包含两部分&#xff0c;平台驱动和器件驱动。平台驱动主要包括通常在SOC内的GPIO、I2C、SPI等&#xff1b;器件驱动则主要包含通常在SOC外的器件&#xff0c;如 LCD、TP、WLAN等 图1 OpenHarmony 驱动分类 HDF驱动被设计为可以跨OS使用的驱动程序&#xff0c;HDF驱动框…

【JAVA】基础学习03变量和关键字

文章目录 JAVA变量与运算符1.关键字&#xff08;keyword&#xff09;2.标识符( identifier)2.1命名规则2.2命名规范2.3变量作用和类型2.3.1整型变量2.3.2补充&#xff1a;计算机存储单位2.3.3浮点类型&#xff1a;float、double2.3.4 关于浮点型精度的说明2.3.5 字符类型&#…

Linux:ip和ip协议的初步认识

文章目录 ip协议基本认识ip协议的报头网段划分ip的类型划分 ip协议基本认识 前面对于TCP的内容已经基本结束了&#xff0c;那么这也就意味着在传输层也已经结束了&#xff0c;那么下一步要进入的是的是网络层&#xff0c;网络层中也有很多种协议&#xff0c;这里主要进行解析的…

【yolov5小技巧(1)】---可视化并统计目标检测中的TP、FP、FN

文章目录 &#x1f680;&#x1f680;&#x1f680;前言一、1️⃣相关名词解释二、2️⃣论文中案例三、3️⃣新建相关文件夹四、4️⃣detect.py推理五、5️⃣开始可视化六、6️⃣可视化结果分析 &#x1f440;&#x1f389;&#x1f4dc;系列文章目录 嘻嘻 暂时还没有~~~~ &a…

OpenHarmony实战:小型系统平台驱动移植

在这一步&#xff0c;我们会在源码目录//device/vendor_name/soc_name/drivers目录下创建平台驱动。 建议的目录结构&#xff1a; device ├── vendor_name │ ├── drivers │ │ │ ├── common │ │ │ ├── Kconfig # 厂商驱动内核菜单入口 │ …

线上线下陪玩,APP小程序H5。源码交付,支持二开!

线下陪玩的风险与管理方式 1、陪玩者的身心健康风险 线下陪玩的模式决定了陪玩者需要与不同的需求方见面&#xff0c;并满足他们的陪伴和娱乐需求。这种工作方式可能会给陪玩者带来身心上的压力和负担。因为陪玩者需要面对各种需求方的要求&#xff0c;有时还需要虚拟出一种完…

mac/win使用pyinstaller打包app/exe文件,活着执行脚本,双击运行

&#x1f338; 踩坑记录 python环境最好使用虚拟环境&#xff0c;推荐使用conda管理&#xff0c;并且若本地有python环境&#xff0c;不要使用和 本地环境版本 相同的虚拟环境 这里踩坑较多&#xff0c;已经记不清楚注意点 虚拟环境python版本不要和本地环境一样 mac/win只能…

day03-Docker

1.初识 Docker 1.1.什么是 Docker 1.1.1.应用部署的环境问题 大型项目组件较多&#xff0c;运行环境也较为复杂&#xff0c;部署时会碰到一些问题&#xff1a; 依赖关系复杂&#xff0c;容易出现兼容性问题开发、测试、生产环境有差异 例如一个项目中&#xff0c;部署时需要依…

Git的简单入门使用

文章目录 拷贝项目的步骤创建项目的步骤提交项目或项目文件的步骤恢复项目文件的步骤 拷贝项目的步骤 找到需要用来存放项目的文件夹&#xff1b;在文件夹页面空白处右键点击&#xff0c;然后再菜单中选择“Open Git Bash here”。在Github上找到需要进行拷贝的项目&#xff0…

算法复习:链表

链表定义 struct ListNode { int val;ListNode *next;ListNode(int x) : val(x), next(nullptr) {} }; 链表的遍历&#xff1a;ListNode phead; while(p!null) pp.next; 找到链表的尾结点&#xff1a;phead; while(p.next!null)pp.next; 链表节点的个数&#xff1a; phead…

基于SSM的网络视频播放器

目录 背景 技术简介 系统简介 界面预览 背景 互联网的迅猛发展彻底转变了全球各类组织的管理策略。自20世纪90年代起&#xff0c;中国政府和企业便开始探索利用网络系统进行信息管理。然而&#xff0c;早期的网络覆盖不广泛、用户接受度不高、相关法律法规不完善以及技术开…

备战蓝桥杯---DP刷题2

1.树形DP&#xff1a; 即问那几个点在树的直径上&#xff0c;类似ROAD那题&#xff0c;我们先求一下每一个子树根的子树的最大值与次大值用d1,d2表示&#xff0c;直径就是d1d2的最大值&#xff0c;那么我们如何判断是否在最大路径上&#xff0c;其实就是看一下从某一点出发的所…

YUNBEE云贝-技术分享:PostgreSQL分区表

引言 PostgreSQL作为一款高度可扩展的企业级关系型数据库管理系统&#xff0c;其内置的分区表功能在处理大规模数据场景中扮演着重要角色。本文将深入探讨PostgreSQL分区表的实现逻辑、详细实验过程&#xff0c;并辅以分区表相关的视图查询、分区表维护及优化案例&#xff0c;…