FPGA高端项目:解码索尼IMX327 MIPI相机+2路视频融合叠加,提供开发板+工程源码+技术支持

目录

  • 1、前言
  • 2、相关方案推荐
    • 本博主所有FPGA工程项目-->汇总目录
    • 我这里已有的 MIPI 编解码方案
  • 3、本 MIPI CSI-RX IP 介绍
  • 4、个人 FPGA高端图像处理开发板简介
  • 5、详细设计方案
    • 设计原理框图
    • IMX327 及其配置
    • MIPI CSI RX
    • 图像 ISP 处理
    • HLS多路视频融合叠加
    • 图像缓存
    • HDMI输出
    • 工程源码架构
    • 时序约束
  • 6、工程源码1详解-->IMX327解码+2路视频融合叠加+HDMI输出
  • 7、工程移植说明
    • vivado版本不一致处理
    • FPGA型号不一致处理
    • 其他注意事项
  • 8、上板调试验证
    • 准备工作
    • 视频输出演示
  • 9、福利:工程代码的获取

FPGA高端项目:解码索尼IMX327 MIPI相机+2路视频融合叠加,提供开发板+工程源码+技术支持

1、前言

FPGA图像采集领域目前协议最复杂、技术难度最高之一的应该就是MIPI协议了,MIPI解码难度之高,令无数英雄竞折腰,以至于Xilinx官方不得不推出专用的IP核供开发者使用,不然太高端的操作直接吓退一大批FPGA开发者,就没人玩儿了。

本设计基于Xilinx的Kintex7-325T中端FPGA开发板,采集2路IMX327 MIPI摄像头的4 Lane MIPI视频,IMX327 摄像头配置为 MIPI4 Lane RAW12模式,输出有效分辨率为1920x1080@60Hz;IMX327 MIPI摄像头引脚经过权电阻方案分出LP电路后接入FPGA的HS BANK的LVDS差分IO;采用自定义的MIPI CSI RX解码IP实现MIPI的D_PHY+CSI_RX功能,输出AXI4-Stream格式的RAW12格式视频,该IP由本博免费提供;至此,MIPI视频解码工作完成,但此时的视频还是原始的RAW12格式,远远达不到输出显示要求,所以还需进行图像处理操作,也就是图像ISP操作;本博提供及其完整的图像ISP,具体流程包括Bayer转RGB888、自动白平衡、色彩校正、伽马校正、RGB888转YCrCb444、图像增强、YCrCb444转RGB888、AE自动曝光等一系列操作;经过ISP处理后的图像颜色饱满、画质清晰,输出RGB888格式的视频;然后再使用Xilinx官方的VDMA图像缓存架构将视频缓存到板载的DDR3中,为了降低延时,仅缓存了1帧,其中一路VDMA配置为读写模式,另一路VDMA配置为只写模式,两路VDMA缓存图像的地址不一样;多路视频融合叠加采用HLS方案,底层视频为输入的第1路视频,叠加层视频为第2路视频经过缩放后得到,2路视频融合在一起输出,可通过SDK软件动态配置2路视频融合的透明度、叠加层视频的缩放大小、叠加层视频的显示位置等信息;;然后在VGA时序的控制下将缓存视频从DDR3中读出,再使用本博常用的HDMI输出模块将图像输出到显示器显示即可;针对目前市面上主流的索尼IMX系列相机,本方案一共移植了1套工程源码,详情如下:

工程源码1:Xilinx Kintex7-325T FPGA 解码索尼的 IMX327 MIPI相机,IMX327 被配置为 4 Lane RAW12 1080P分辨率;经FPGA解码、ISP图像处理、图像缓存、视频融合叠加、VGA时序同步、HDMI视频输出等操作后,通过板载的HDMI接口输出显示器;本工程的相机接在配套FPGA开发板的P4接口;

IMX327-MIPI相机在FPGA开发板P3口和P4口的连接方式如下图:
在这里插入图片描述

2、相关方案推荐

本博主所有FPGA工程项目–>汇总目录

其实一直有朋友反馈,说我的博客文章太多了,乱花渐欲迷人,自己看得一头雾水,不方便快速定位找到自己想要的项目,所以写了一篇汇总目录的博文并置顶,列出我目前已有的所有项目,并给出总目录,每个项目的文章链接,当然,本博文实时更新。。。博客链接如下:
点击直接前往

我这里已有的 MIPI 编解码方案

我这里目前已有丰富的基于FPGA的MIPI编解码方案,主要是MIPI解码的,既有纯vhdl实现的MIPI解码,也有调用Xilinx官方IP实现的MIPI解码,既有2line的MIPI解码,也有4line的MIPI解码,既有4K分辨率的MIPI解码,也有小到720P分辨率的MIPI解码,既有基于Xilinx平台FPGA的MIPI解码也有基于Altera平台FPGA的MIPI解码,还有基于Lattice平台FPGA的MIPI解码,后续还将继续推出更过国产FPGA的MIPI解码方案,毕竟目前国产化方案才是未来主流,后续也将推出更多MIPI编码的DSI方案,努力将FPGA的MIPI编解码方案做成白菜价。。。
基于此,我专门建了一个MIPI编解码的专栏,并将MIPI编解码的博客都放到了专栏里整理,对FPGA编解码MIPI有项目需求或学习兴趣的兄弟可以去我的专栏看看,专栏地址如下:
点击直接前往专栏

3、本 MIPI CSI-RX IP 介绍

本设计采用本博自研的MIPI CSI RX解码IP实现MIPI的D_PHY+CSI_RX功能,输出AXI4-Stream格式的RAW12颜色视频,该IP由本博免费提供;该IP目前只适用于Xilinx A7及其以上系列器件,支持的 4 lane RAW12图像,输入分辨率最高支持4K @30帧;IP UI配置界面如下:
在这里插入图片描述
该自定义IP只提供网表不提供源码,但用户依然可以自由使用,和使用Xilixn官方的 MIPI CSI-2 RX Subsystem一样,没有本质区别,因为MIPI CSI-2 RX Subsystem也是看不到源码的;MIPI CSI-RX IP资源消耗如下:
在这里插入图片描述

4、个人 FPGA高端图像处理开发板简介

本博客提供的工程源码需配合本博提供的FPGA高端图像处理开发板才能使用,亦或者读者自己拿去移植,但本博推荐使用本博客提供的工程源码需配合本博提供的FPGA高端图像处理开发板,该开发板截图如下:
在这里插入图片描述
此开发板专为高端FPGA图像处理设计,适合公司项目研发、研究所项目预研、高校项目开发、个人学习进步等场景需求,本博之前专门写过一篇博文详细介绍了该开发板的情况,感兴趣的请移步那篇博文,博客地址如下:
点击直接前往

5、详细设计方案

设计原理框图

工程源码的设计原理框图如下:
在这里插入图片描述

IMX327 及其配置

本设计使用本博提供的专用SONY公司的 IMX327 MIPI相机,该相机输出分辨率达到了1920x1080,采用焦距可调的镜头,清晰度极高,适用于高端项目开发,相机截图如下:
在这里插入图片描述
IMX327 MIPI相机需要 i2c配置才能正确使用,本设计调用本博自定义的i2c主机IP实现对IMX327的配置,该IP挂载与AXI-Lite总线上,通过MicroBlaze软核运行的C语言代码实现配置,此外,本博还设计了自动曝光程序,实时读取IMX327 RAW12像素,通过写IMX327对应寄存器的方式实现实时的自动曝光算法,使得IMX327在暗黑的环境下也能输出明亮的图像;

本博提供的FPGA开发板有两个MIPI CSI-RX接口,分别位于P3、P4接口,因此可以接两个MIPI相机,其中,P4接口的相机采用螺丝固定方式连接,适用于FPGA开发板需要移动的项目,如小车等;P3接口的相机采用FPC软排线方式连接,适用于FPGA开发板不需要移动的项目,如固定检测等,具体连接方式如下图:
在这里插入图片描述

MIPI CSI RX

本设计采用自定义的MIPI CSI RX解码IP实现MIPI的D_PHY+CSI_RX功能,输出AXI4-Stream格式的RAW12颜色视频,该IP由本博免费提供;该IP目前只适用于Xilinx A7及其以上系列器件,支持的 4 lane RAW12图像,输入分辨率最高支持4K @30帧;IP UI配置界面如下:
在这里插入图片描述
该自定义IP只提供网表不提供源码,但用户依然可以自由使用,和使用Xilixn官方的 MIPI CSI-2 RX Subsystem一样,没有本质区别,因为MIPI CSI-2 RX Subsystem也是看不到源码的;

图像 ISP 处理

本博提供及其完整的图像ISP,具体流程包括Bayer转RGB888、自动白平衡、色彩校正、伽马校正、RGB888转YCrCb444、图像增强、YCrCb444转RGB888、AE自动曝光等一系列操作;经过ISP处理后的图像颜色饱满、画质清晰,输出YCrCb422格式的视频;图像 ISP 处理在工程 Block Design中如图:
在这里插入图片描述
这些IP均为Xilinx的免费IP,有的需要配置才能使用,在MicroBlaze软核运行的C语言代码已经提供了配置程序;其中AE自动曝光采用SDK C语言AE算法实现,FPGA实时读取IMX327的亮度值,然后与AE模型进行比较,亮度不足则补光,亮度太高则降光,通过控制IMX327内部寄存器实现,C代码需要在MicroBlaze软核运行;

HLS多路视频融合叠加

多路视频融合叠加设计框图如下如所示:
在这里插入图片描述
多路视频融合叠加由底层视频和叠加层视频融合叠加而成,底层视频为输入的第1路视频,叠加层视频为第2路视频经过缩放后得到,两路视频融合在一起输出,可通过SDK软件动态配置2路视频融合的透明度、叠加层视频的缩放大小、叠加层视频的显示位置等信息;;设计加采用HLS方案C++代码实现,并综合成RTL后封装为IP,可在vivado中调用该IP,关于这个方案详情,请参考我之前的博客,博客链接如下:
点击直接前往
该IP在vivado中的综合资源占用情况如下:
在这里插入图片描述
HLS多路视频融合叠加需要在SDK中运行驱动和用户程序才能正常工作,我在工程中给出了C语言程序,具体参考工程源码;

图像缓存

工程使用VDMA图像缓存方案,VDMA架构使用Xilinx官方力推的VDMA图像缓存架构实现图像1帧缓存,VDMA图像缓存架构由Video In to AXI4-Stream、VDMA、Video Timing Controller、AXI4-Stream To Video Out构成;其在Block Design中如下:
在这里插入图片描述
VDMA需要驱动才能正常工作,本工程提供C语言驱动;

HDMI输出

HDMI输出架构由VGA时序和HDMI输出模块构成,VGA时序负责产生输出的1920x1080@60Hz的时序,并控制FDMA数据读出,HDMI输出模块负责将VGA的RGB视频转换为差分的TMDS视频,代码架构如下:
在这里插入图片描述
HDMI输出模块采用verilog代码手写,可以用于FPGA的HDMI发送应用,关于这个模块,请参考我之前的博客,博客地址:点击直接前往

工程源码架构

工程源码的vivado Block Design设计截图如下:
在这里插入图片描述
工程源码截图如下:
在这里插入图片描述
工程源码需要运行MicroBlaze软核,用于配置ISP、VDMA等;SDK工程架构如下:
在这里插入图片描述
SDK代码中配置如下,用户可根据自己的需求任意修改;
第1路视频为底层视频,分辨率为1920x1080;
第2路视频为叠加层视频,分辨率为1920x1080,从叠加层视频坐标(760,340)处为原点取一块600x600的区域作为叠加融合视频;
将上一步取到的600x600的叠加融合视频进行图像缩放,缩放为960x540;
将上一步960x540的叠加融合视频从底层视频的(0,0)坐标开始叠加,底层与叠加层的透明度设置为40;

时序约束

由于本工程使用的时钟较多,有MIPI输入的差分时钟,有MIG使用的差分时钟,有MIPI相机使用的像素时钟,有HDMI模块使用的差分时钟,所以必须做时序分组约束,在代码的XDC文件里已经做好;此外,由于MIG输出的用户时钟达到了200M,所以整个系统的时钟太高,又加之整个工程使用的AXI总线较多,就导致时序很不收敛,所以我们将MIPI解码输出的时钟控制在100M,这样一来,图像从MIPI解码到VDMA之间时钟保持在100M的较低频率下,而软核控制的AXI总线系统依然跑200M,所以时序就收敛很多;如果不做上述时序约束,会导致MicroBlaze软核程序直接跑飞,整个系统无法运行吗,甚至在SDK里都无法进入DEBUG;

6、工程源码1详解–>IMX327解码+2路视频融合叠加+HDMI输出

开发板FPGA型号:Xilinx–Kintex7–xc7k325tffg676-2;
开发环境:Vivado2019.1;
输入1:IMX327 MIPI相机,4 Lane,分辨率1920x1080@60Hz;
输入2:IMX327 MIPI相机,4 Lane,分辨率1920x1080@60Hz;
输出:HDMI,分辨率1920x1080@60Hz下叠加缩放后的图像输出;
多路视频融合叠加:自研HLS方案;
图像缓存方案:VDMA方案;
图像缓存路径:DDR3;
工程作用:此工程目的是让读者掌握FPGA实现IMX327相机MIPI解码+图像缩放+转HDMI的设计能力,以便能够移植和设计自己的项目;
工程Block Design和工程代码架构请参考第5章节“工程源码架构“小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

7、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

8、上板调试验证

准备工作

需要准备的器材如下:
本博提供的FPGA开发板;
本博提供的IMX327 MIPI相机;
HDMI显示器;
我的开发板了连接如下:
在这里插入图片描述

视频输出演示

IMX327-2视频融合叠加

9、福利:工程代码的获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/514848.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于vscode Arduino插件开发Arduino项目

基于vscode Arduino插件开发arduino项目 插件配置问题记录1. 指定编译输出文件夹2. 编译下载时不输出详细信息3. 输出端口信息乱码4. 通过串口输出中文,vscode对应的串口助手上会显示乱码(未解决) 插件配置 环境:Arduino插件版本…

Linux基础篇:VMware centos7虚拟机网络配置——桥接模式

VMware centos7虚拟机网络配置——桥接模式 1 搞清楚什么是桥接模式 桥接模式允许虚拟机直接连接到物理网络,就像它是物理网络中的一个独立设备一样。在这种模式下,虚拟机将具有与宿主机相同网络中的其他设备相同的网络访问权限。虚拟机将获得一个独立…

机器学习——几个线性模型的简介

目录 形式 假设 一元回归例子理解最小二乘法 多元回归 广义线性回归 对数线性回归 逻辑回归 线性判别分析 形式 线性说白了就是初中的一次函数的一种应用,根据不同的(x,y)拟合出一条直线以预测,从而解决各种分类或回归问题,假设有 n …

Spring-IoC 基于xml管理

现大多使用注解方式,xml方式并不简洁,本文仅记录xml用作基础学习。 0、前提 首先在父项目的pom.xml中配置好依赖们。然后子模块也可以使用这些依赖。 在resource目录下创建Spring的xml文件,名称无要求,本文使用bean.xml。文件最…

大数据实验统计-1、Hadoop安装及使用;2、HDFS编程实践;3、HBase编程实践;4、MapReduce编程实践

大数据实验统计 1、Hadoop安装及使用; 一.实验内容 Hadoop安装使用: 1)在PC机上以伪分布式模式安装Hadoop; 2)访问Web界面查看Hadoop信息。 二.实验目的 1、熟悉Hadoop的安装流程。 2、…

Educational Codeforces Round 133 (Rated for Div. 2) C. Robot in a Hallway

题目 思路&#xff1a; #include <bits/stdc.h> using namespace std; #define int long long #define pb push_back #define fi first #define se second #define lson p << 1 #define rson p << 1 | 1 const int maxn 1e6 5, inf 1e18, maxm 4e4 5; c…

探索async/await的魔力:简化JavaScript异步编程

&#x1f31f; 前言 欢迎来到我的技术小宇宙&#xff01;&#x1f30c; 这里不仅是我记录技术点滴的后花园&#xff0c;也是我分享学习心得和项目经验的乐园。&#x1f4da; 无论你是技术小白还是资深大牛&#xff0c;这里总有一些内容能触动你的好奇心。&#x1f50d; &#x…

软件设计师28--SQL语言

软件设计师28--SQL语言 考点1&#xff1a;普通查询SQL语言SQL语言 - 查询例题&#xff1a; 考点2&#xff1a;分组查询SQL语言 - 查询例题&#xff1a; 考点3&#xff1a;权限控制SQL语言例题&#xff1a; 考点1&#xff1a;普通查询 SQL语言 SQL语言 - 查询 例题&#xff1a;…

容器安全的防护之道

随着云计算的发展&#xff0c;云原生技术已经成为企业数字化转型的得力武器&#xff0c;如何保障容器安全&#xff0c;已成为企业最关心的问题。为此&#xff0c;德迅蜂巢原生安全平台由德迅云安全自主研发&#xff0c;能够很好集成到云原生复杂多变的环境中&#xff0c;如PaaS…

redis乱码\xac\xed\x00\x05t\x00H解决

发现数据库乱码&#xff1a; 这数据库是来自rdids队列list实现的一个简单队列&#xff0c;停止使用该list的服务&#xff0c;查看里面的值&#xff0c;发现 乱码\xac\xed\x00\x05t\x00H&#xff0c;如下图&#xff1a; 很明发送数据端的问题&#xff0c;检查代码&#xff1a; …

软考高级架构师:嵌入式系统概述

一、AI 讲解 嵌入式操作系统是一种专门设计来管理特定硬件的软件系统。它能够在资源有限的环境中高效运行&#xff0c;常见于嵌入式系统中&#xff0c;如智能家居设备、工业控制系统等。 下面将详细介绍嵌入式系统的架构、初始化过程和部件构成。 嵌入式系统的架构 嵌入式系…

【HTB】Trick 靶场

Trick靶场 地址&#xff1a;https://app.hackthebox.com/machines/477 打靶过程 靶机IP:10.129.227.180 1.信息收集 1.1 nmap 端口扫描 ┌──(root㉿kali)-[~/Desktop] └─# nmap -Pn -sC -sV -p- 10.129.227.180 --min-rate5000 Starting Nmap 7.94SVN ( https://nmap…

探索口腔系统功能架构的演变与未来

随着医疗技术的不断发展和人们对口腔健康的重视&#xff0c;口腔系统的功能架构也在不断演变。从传统的口腔诊疗到数字化的口腔健康管理&#xff0c;口腔系统的功能框架正在经历着翻天覆地的变化。本文将深入探讨口腔系统功能架构的演变历程以及未来发展趋势。 --- 随着社会的…

JavaScript(六)---【回调、异步、promise、Async】

零.前言 JavaScript(一)---【js的两种导入方式、全局作用域、函数作用域、块作用域】-CSDN博客 JavaScript(二)---【js数组、js对象、this指针】-CSDN博客 JavaScript(三)---【this指针&#xff0c;函数定义、Call、Apply、函数绑定、闭包】-CSDN博客 JavaScript(四)---【执…

阿里云弹性计算通用算力型u1实例性能评测,性价比高

阿里云服务器u1是通用算力型云服务器&#xff0c;CPU采用2.5 GHz主频的Intel(R) Xeon(R) Platinum处理器&#xff0c;ECS通用算力型u1云服务器不适用于游戏和高频交易等需要极致性能的应用场景及对业务性能一致性有强诉求的应用场景(比如业务HA场景主备机需要性能一致)&#xf…

某站价值5000的码支付多商户商业版 完美可运营版本PHP源码

一款非常好用的码支付即时到账PHP源码 互站网卖4999 买来之后 模板有点丑 自己更换了的一个好看点的 1.修改数据库 用户名 密码 数据库名 2.后台地址 你的域名/admin 账号admin 密码123456 3.通用的监控APP软件, 反编译一下修改成你平台的名字和图标即可 源码免费…

动规训练2

一、最小路径和 1、题目解析 就是一个人从左上往做下走&#xff0c;每次只能往右或者往下&#xff0c;求他到终点时&#xff0c;路径上数字和最小&#xff0c;返回最小值 2、算法原理 a状态表示方程 小技巧&#xff1a;经验题目要求 用一个二维数组表示&#xff0c;创建一个…

(4)(4.6) Triducer

文章目录 前言 1 安装triducer 2 故障排除 3 参数说明 前言 Triducer 集速度、温度和深度传感器于一体。埃文在这篇 ardupilot.org 博文底部提供了这些说明(Evan at the bottom of this ardupilot.org blog post)。 1 安装triducer 下面的示例提供了在 Pixhawk 上安装 tri…

javaWeb城市公交查询系统的设计与实现

一、选题背景 随着低碳生活的普及&#xff0c;人们更倾向于低碳环保的出行方式&#xff0c;完善公交系统无疑具有重要意义。公交是居民日常生活中最常使用的交通工具之一&#xff0c;伴随着我国经济繁荣和城市人口增长&#xff0c;出行工具的选择也变得越来越重要。政府在公共…

使用vuepress搭建个人的博客(一):基础构建

前言 vuepress是一个构建静态资源网站的库 地址:VuePress 一般来说,这个框架非常适合构建个人技术博客,你只需要把自己写好的markdown文档准备好,完成对应的配置就可以了 搭建 初始化和引入 创建文件夹press-blog npm初始化 npm init 引入包 npm install -D vuepress…