红黑树介绍
红黑树(Red Black Tree)是一种自平衡二叉查找树。由于其自平衡的特性,保证了最坏情形下在 O(logn) 时间复杂度内完成查找、增加、删除等操作,性能表现稳定。
在 JDK 中,TreeMap、TreeSet 以及 JDK1.8 的 HashMap 底层都用到了红黑树。
为什么需要红黑树
红黑树的诞生就是为了解决二叉查找树的缺陷。
二叉查找树是一种基于比较的数据结构,它的每个节点都有一个键值,而且左子节点的键值小于父节点的键值,右子节点的键值大于父节点的键值。这样的结构可以方便地进行查找、插入和删除操作,因为只需要比较节点的键值就可以确定目标节点的位置。
但是,二叉查找树有一个很大的问题,就是它的形状取决于节点插入的顺序。如果节点是按照升序或降序的方式插入的,那么二叉查找树就会退化成一个线性结构,也就是一个链表。这样的情况下,二叉查找树的性能就会大大降低,时间复杂度就会从 O(logn) 变为 O(n)。
红黑树的诞生就是为了解决二叉查找树的缺陷,因为二叉查找树在某些情况下会退化成一个线性结构。
红黑树特点
- 每个节点非红即黑。黑色决定平衡,红色不决定平衡。
- 根节点总是黑色的。
- 每个叶子节点都是黑色的空节点也就是 NIL 节点。这里指的是红黑树都会有一个空的叶子节点,是红黑树自己的规则。
- 如果节点是红色的,则它的子节点必须是黑色的,反之不一定。通常这条规则也叫不会有连续的红色节点。一个节点最多临时会有 3 个节点,中间是黑色节点,左右是红色节点。
- 从任意节点出发,沿着这个节点到达其所有叶子节点的路径上,经过的黑色节点的数量必须相同。每一层都只是有一个节点贡献了树高决定平衡性,也就是对应红黑树中的黑色节点。
正是这些特点才保证了红黑树的平衡,让红黑树的高度不会超过 2log(n+1)。
红黑树数据结构
建立在 BST 二叉搜索树的基础上,AVL、2-3 树、红黑树都是自平衡二叉树(统称 B-树)。但相比于 AVL 树,高度平衡所带来的时间复杂度,红黑树对平衡的控制要宽松一些,红黑树只需要保证黑色节点平衡即可。
红黑树结构实现
public class Node {
public Class<?> clazz;
public Integer value;
public Node parent;
public Node left;
public Node right;
// AVL 树所需属性
public int height;
// 红黑树所需属性
public Color color = Color.RED;
}
1.左倾染色
- 染色时根据当前节点的爷爷节点,找到当前节点的叔叔节点。
- 再把父节点染黑、叔叔节点染黑,爷爷节点染红。但爷爷节点染红是临时的,当平衡树高操作后会把根节点染黑。
2.右倾染色
3.左旋调衡
一次左旋
右旋+左旋
4.右旋调衡
一次右旋
左旋+右旋