4大企业实例解析:为何MongoDB Atlas成为AI服务构建的首选

请添加图片描述

随着人工智能和生成式AI技术的迅猛发展,众多企业和机构正积极利用自然语言处理(NLP)、大型语言模型(LLM)等前沿技术,打造出一系列AI驱动的产品、服务和应用程序。

本文将展示四家已在AI创新领域取得显著成效的企业,以及他们与MongoDB的紧密合作。这些企业选择了MongoDB Atlas这一多云的开发者数据平台,将操作、分析和生成式AI的数据服务完美融合,从而简化了AI应用程序的构建流程。

Pending AI:利用下一代技术,革新药物研发

澳大利亚的Pending AI公司凭借前沿的AI和量子技术,成功打造出Pending AI平台,旨在攻克药物研发初期阶段的核心难题。该平台显著提升了化合物发现流程的效率和效果,使研究人员在更短时间内、更低成本下,获得更优质、更具商业价值的模型,进而推进临床开发进程。

在开发如生成式分子设计器等核心功能时,Pending AI遭遇了巨大的挑战。因为化学领域涉及的已知药理学相关分子数量庞大无比,涵盖超过5000万种化学反应和数十亿个分子构建块。要精准设计出所需分子并确定其最佳合成路径,专业科学家往往需要经历成本高昂、耗时低效的试错过程。因此,Pending AI急需一个能够高效处理海量数据且性能卓越的数据库,以满足化学领域的广泛需求。

在这里插入图片描述

图一:Pending AI生成式分子设计器等工作成果

**在对比多个数据库后,Pending AI最终选择了MongoDB。**作为久经考验、稳定可靠且易于部署的解决方案,MongoDB助力Pending AI团队在MongoDB Atlas上成功构建高性能部署。尤其在Pending AI开始采用AWS云时,MongoDB Atlas以低成本的全托管方案亮相,并通过在AWS和MongoDB集群间建立私有端点,确保了数据传输的最低延迟和安全性。

展望未来,Pending AI计划进一步探索MongoDB 7.0中的Atlas Search功能。此举旨在将目前难以管理和维护的搜索功能直接集成到MongoDB中,从而摆脱对需单独维护的Elasticsearch集群的依赖,为药物研发带来更为便捷与高效的体验。

Eclipse AI:洞察客户互动,实现收入增长

Eclipse AI作为一款SaaS平台,其核心价值在于将分散于多个渠道(如客户电话、电子邮件、调查问卷、产品评论、支持工单等)的客户互动数据转化为深刻的洞察,进而助力企业留住客户并提升收入。该平台的设计初衷便是为了解决客户体验(CX)团队长期以来面临的挑战,使他们不必再为整合与分析多渠道客户反馈数据而耗费大量时间与人力。

在将客户反馈转化为可操作洞察的过程中,Eclipse AI首要面临的问题是整合那些碎片化的客户声音数据;其次,则是深入分析这些数据,提炼出具体的改进措施,以优化客户体验并防止客户流失。

MongoDB Atlas以其灵活的文档数据库特性,能够轻松存储和索引非结构化数据的向量嵌入,因此成为Eclipse AI的理想选择。借助MongoDB Atlas,Eclipse AI的开发团队能够高效、快速地构建产品,同时免去了管理基础设施的繁琐工作。此外,MongoDB Atlas Device SDKs(前称Realm)和MongoDB Atlas Search等功能在Eclipse AI平台的功能实现中发挥了至关重要的作用。
在这里插入图片描述

图二:Eclipse AI – MongoDB仪表盘

对Eclipse AI而言,MongoDB不仅是一个强大的数据库,更是一种数据即服务的理念,它助力Eclipse AI快速迭代并发布新功能,从而不断满足市场与客户的需求。

Safety Champion:构建未来安全管理,着眼生成式AI

Safety Champion,自2015年起便致力于革新安全管理行业,深知工作场所安全的重要性。该公司充分利用云技术,打破传统纸质流程局限,引领行业变革。其创始人Craig Salter强调,数据是服务核心,推动下一代安全计划的关键。因此,Safety Champion选择MongoDB作为技术基石,并于2017年采用MongoDB Atlas,提升了成本效益,降低了管理负担。

MongoDB的易用性使应用开发迅速简便,性能提升显著,为开发人员节省时间,专注业务创新和客户需求。MongoDB Charts为客户提供强大的分析功能,助力做出基于证据的安全决策。经过近十年发展,特别是在疫情期间,Safety Champion平台迅猛增长,客户数超2000家,每月处理文档高达10万份,开发团队规模翻倍。

在这里插入图片描述

图三:Safety Champion 平台

展望未来,**Safety Champion计划利用MongoDB在生成式AI、搜索和多区域等方面的优势,满足多样化需求。**公司正升级至MongoDB 6.0,全面融入MongoDB Search,并计划于2024年下半年使用MongoDB Vector Search。Safety Champion正研究利用语义洞察理解员工文本数据,结合大型语言模型提取有价值信息。

Craig Salter表示,客户期望从数据中获取深入分析、见解和更高层次意义。MongoDB Atlas支持下的Safety Champion新平台,标志着公司迈向新阶段,借助生成式AI等功能,引领安全管理新纪元。

Syncly:利用MongoDB Atlas Vector Search加速客户反馈分析创新

在现今商业环境中,企业对客户反馈的迅速响应与深入分析已成为业务增长的关键。客户之声(VoC)服务日益复杂,需要借助AI技术提升分析效率。韩国的Syncly公司,作为软件即服务领域的初创企业,敏锐捕捉到了VoC市场的潜力,推出了AI驱动的客户反馈分析解决方案。

Syncly平台集成多种渠道,实时收集、管理VoC数据,并通过AI进行深入分析,为企业提出改进措施,增强客户关系。其服务核心在于自动处理大量数据,为VoC提供全面可见性,并重视语义搜索在定性分析中的作用。

然而,传统搜索功能在处理复杂数据时存在局限。Syncly积极采用AI技术,应对结构化与非结构化数据的挑战,实现高效相似性分析。为此,Syncly引入了MongoDB Atlas Vector Search,自动化数据加载与相似性分析,减轻开发者负担,提高生产力。

在这里插入图片描述
在这里插入图片描述

图四:Syncly 平台

随着服务的拓展,Syncly计划整合MongoDB的商业工具,增加搜索节点和全球集群,提升处理能力。同时,团队还将利用AI开发VoC服务,与MongoDB韩国团队紧密合作,优化产品与服务,确保安全性。

这一系列举措将使Syncly在客户反馈分析领域保持领先,推动持续创新。通过利用MongoDB Atlas Vector Search等先进技术,Syncly正助力企业更高效地聆听客户之声,提升业务竞争力。

在这里插入图片描述

MongoDB Atlas是为AI量身打造的数据库解决方案。MongoDB以其卓越的能力,助力企业及其开发团队有效管理那些难以整齐地适应传统关系数据库严格行和列结构的丰富结构化数据,并将其转化为富有意义且具备操作性的洞察,从而推动AI的实际应用。

此外,MongoDB Atlas新增的Vector Search(向量搜索)功能,使得开发者能够构建出由语义搜索和生成式AI驱动的智能应用,这些应用可适用于各种类型的数据。

同时,MongoDB Atlas还引入了AWS CodeWhisperer编码助手,为企业提供了更多探索AI的可能性。

本文所提及的仅是MongoDB Atlas在AI领域可实现功能的冰山一角。MongoDB的客户遍布全球,涵盖从初创企业到游戏、汽车、制造业、银行、电信等多个行业。这些客户正积极采用MongoDB Atlas及其Atlas Search、向量搜索等功能,共同描绘出未来十年AI和生成式AI的发展蓝图。

MongoDB Atlas

MongoDB Atlas 是 MongoDB 公司提供的 MongoDB 云服务,由 MongoDB 数据库的开发团队构建和运维,可以 AWS、Microsoft Azure、Google Cloud Platform 云平台上轻松部署、运营和扩展。MongoDB Atlas 内建了 MongoDB 安全和运维最佳实践,可自动完成基础设施的部署、数据库的构建、高可用部署、数据的全球分发、备份等即费时又需要大量经验运维工作。让您通过简单的界面和 API 就 可以完成这些工作,由此您可以将更多宝贵的时间花在构建您的应用上。

点击MongoDB Atlas客户案例:

● 检索时间减少83%!部署MongoDB后,通用电气医疗集团狠狠提升了物联网设备的利用效率!

● Samsung SmartHome 团队利用 MongoDB Atlas 为工程师真正实现工作与生活的平衡


👉点击访问 MongoDB中文官网
👉立即免费试用 MongoDB Atlas
☎️需要支持?欢迎联系我们:400-8662988
✅欢迎关注MongoDB微信订阅号(MongoDB-China),及时获取最新资讯。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/514011.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙实战开发:【实现应用悬浮窗】

如果你要做的是系统级别的悬浮窗&#xff0c;就需要判断是否具备悬浮窗权限。然而这又不是一个标准的动态权限&#xff0c;你需要兼容各种奇葩机型的悬浮窗权限判断。 fun checkPermission(context: Context): Boolean if (Build.VERSION.SDK_INT < Build.VERSION_CODES.M)…

IDEA 解决 java: 找不到符号 符号: 类 __ (使用了lombok的注解)

原因IDEA版本太高&#xff0c;在 ProcessingEnvironement 预编译的时候是以代理的方式来执行的&#xff0c;不再是直接 javac方式, lombok依赖的 javac方式的 annotation processors 不再生效了 解决办法&#xff1a;下面这一句&#xff0c;加在下图中 -Djps.track.ap.depen…

权限提升-Linux系统权限提升篇VulnhubRbash绕过DockerLXD容器History泄漏shell交互

知识点 1、普通用户到Linux-泄漏-History 2、普通用户到Linux-限制-Rbash绕过 3、普通用户到Linux-容器-LXD&Docker 4.Linux系统提权-web/普通用户-docker逃逸&提权&shell交互 章节点&#xff1a; 1、Web权限提升及转移 2、系统权限提升及转移 3、宿主权限提升及…

[计算机效率] 格式转换工具:格式工厂

3.14 格式转换工具&#xff1a;格式工厂 格式工厂是一款功能强大的多媒体格式转换软件&#xff0c;可以实现音频、视频、图片等多种格式的转换。它支持几乎所有类型的多媒体格式&#xff0c;包括视频、音频、图片、字幕等&#xff0c;可以轻松实现格式之间的转换&#xff0c;并…

java Web 健身管理系统idea开发mysql数据库LayUI框架java编程计算机网页源码maven项目

一、源码特点 java Web健身管理系统是一套完善的信息管理系统&#xff0c;结合java 开发技术和bootstrap完成本系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。 前段主要技术 layUI bootst…

【前端面试3+1】10 npm run dev 发生了什么、vue的自定义指令如何实现、js的数据类型有哪些及其不同、【最长公共前缀】

一、npm run dev发生了什么 运行npm run dev时&#xff0c;通常是在一个基于Node.js的项目中&#xff0c;用来启动开发服务器或者执行一些开发环境相关的任务。下面是一般情况下npm run dev会执行的步骤&#xff1a; 1. 查找package.json中的scripts字段&#xff1a; npm会在项…

SQL server 查询数据库中所有的表名及行数

SQL server 查询数据库中所有的表名及行数 select a.name,b.rows from sysobjects as ainner join sysindexes as bon a.id b.id where (a.type u)and (b.indid in (0, 1)) and b.rows<50 and b.rows>20 order by a.name, b.rows desc;

elementui 左侧或水平导航菜单栏与main区域联动

系列文章目录 一、elementui 导航菜单栏和Breadcrumb 面包屑关联 二、elementui 左侧导航菜单栏与main区域联动 三、elementui 中设置图片的高度并支持PC和手机自适应 四、elementui 实现一个固定位置的Pagination&#xff08;分页&#xff09;组件 文章目录 系列文章目录…

glm2大语言模型服务环境搭建

一、模型介绍 ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本&#xff0c;在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上&#xff0c;ChatGLM2-6B 引入了如下新特性&#xff1a; 更强大的性能&#xff1a;基于 ChatGLM 初代模型的开发经验&…

当Pycharm中右键运行python程序时出现Run ‘pytest in tests ***py‘,如何解决?

1、在Pycharm中右键运行python程序时出现Run pytest in tests ***py &#xff0c;这是进入了Pytest模式。 2、解决办法 进入到File->Settings->Tools->Python integrated Tools页面或者快捷键&#xff08;CtrlAltS&#xff09; 找到Testing下的Default test runner …

用QT调用FFMPEG的接口

1、调用FFmpeg接口 打开Qt&#xff0c;新建工程&#xff1b; 在工程的pro文件中&#xff0c;添加如下字段&#xff1b; TEMPLATE app CONFIG console CONFIG - app_bundle CONFIG - qtSOURCES \main.c INCLUDEPATH /home/wxw/ffmpeg_build/includeLIBS /home/wxw/ffmpe…

centOS如何升级python

centOS下升级python版本的详细步骤 1、可利用linux自带下载工具wget下载&#xff0c;如下所示&#xff1a; 笔者安装的是最小centos系统&#xff0c;所以使用编译命令前&#xff0c;必须安装wget服务&#xff0c;读者如果安装的是界面centos系统&#xff0c;或者使用过编译工具…

drawio画图编辑图形颜色

drawio画图编辑图形颜色 团队的安全第一图表。将您的存储空间带到我们的在线工具中&#xff0c;或使用桌面应用程序进行本地保存。 1.安装准备 1.1安装平台 多平台 1.2在线使用 浏览器打开网页使用 1.3软件下载 drawio官网github仓库下载 2.在浏览器的网页中使用drawio…

c++20协程详解(三)

前言 前面两节我们已经能够实现一个可用的协程框架了。但我们一定还想更深入的了解协程&#xff0c;于是我们就想尝试下能不能co_await一个协程。下面会涉及到部分模板编程的知识&#xff0c;主要包括&#xff08;模板偏特化&#xff0c;模板参数列表传值&#xff0c;模板函数…

redis事务(redis features)

redis支持事务&#xff0c;也就是可以在一次请求中执行多个命令。redis中的事务主要是通过MULTI和EXEC这两个命令来实现的。 MULTI命令用来开启一个事务&#xff0c;事务开启之后&#xff0c;所有的命令就都会被放入到一个队列中&#xff0c;最后通过一个EXEC命令来执行事务中…

【MATLAB源码-第29期】基于matlab的MIMO,MISO,SIMO,SISO瑞利rayleigh信道容量对比。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 1. SISO&#xff08;单输入单输出&#xff09;&#xff1a; - SISO 是指在通信系统中&#xff0c;只有一个天线用于传输信号&#xff0c;也只有一个天线用于接收信号的情况。这是最简单的通信方式。 2. SIMO&#xff08;单…

基于AI智能识别技术的智慧展览馆视频监管方案设计

一、建设背景 随着科技的不断进步和社会安全需求的日益增长&#xff0c;展览馆作为展示文化、艺术和科技成果的重要场所&#xff0c;其安全监控系统的智能化升级已成为当务之急。为此&#xff0c;旭帆科技&#xff08;TSINGSEE青犀&#xff09;基于视频智能分析技术推出了展览…

单例模式(加深版)

单例模式&#xff08;加深版&#xff09; 饿汉模式 缺点&#xff1a;造成资源的浪费 示例&#xff1a; ## 懒汉模式 示例&#xff1a; 枚举类型单例模式 示例&#xff1a;

ElasticSearch7.8的下载与安装和Kibana 7.8.0工具使用安装

1、ElasticSearch7.8.0下载 elasticsearch: 官方下载地址&#xff1a;https://www.elastic.co/cn/downloads/elasticsearch 链接: https://pan.baidu.com/s/1wAKQoB3nhLhcnBlPfVOLxQ 提取码: t83n kibana: 链接: https://pan.baidu.com/s/156aD9zDdvUv8LFgDEIPoSw 提取码:…

案例分析-程序的机器级表示

案例一&#xff1a;关于编译优化 请自写一段if- else简单分支程序&#xff0c;分别尝试对它进行不带优化、-O1优化和-O2优化&#xff0c;比较它们的机器级表达&#xff0c;并讨论优劣。 图一为不带优化、图二为O1优化、图三为O2优化、图四为原始C代码。 &#xff08;1&#xff…