【深度学习】以图搜索- 2021sota repVgg来抽取向量 + facebook的faiss的做特征检索, 从环境搭建到运行案例从0到1

文章目录

  • 前言
  • 安装
  • 小试牛刀
  • 用repVgg抽取向量
  • 构建Faiss索引
  • 进行相似性搜索
  • 项目延伸
  • 总结


前言

Faiss的全称是Facebook AI Similarity Search。

这是一个开源库,针对高维空间中的海量数据,提供了高效且可靠的检索方法。
暴力检索耗时巨大,对于一个要求实时人脸识别的应用来说是不可取的。
而Faiss则为这种场景提供了一套解决方案。
Faiss从两个方面改善了暴力搜索算法存在的问题:降低空间占用加快检索速度首先,
Faiss中提供了若干种方法实现数据压缩,包括PCA、Product-Quantization等
ref:https://zhuanlan.zhihu.com/p/133210698,https://zhuanlan.zhihu.com/p/357414033
代码仓库:https://github.com/facebookresearch/faiss
faiss的用法在这里:https://github.com/facebookresearch/faiss/wiki/Getting-started
ref:https://github.com/ChunelFeng/caiss 据说这个也不错,我还没试,从名字也可以看出来是类似 faiss的东西
ref:https://blog.csdn.net/yaozaiyuanfang/article/details/116608345
ref: https://blog.csdn.net/yaozaiyuanfang/article/details/116608375?spm=1001.2014.3001.5502 —这个总结的也不错


安装

ref:https://anaconda.org/pytorch/faiss-gpu
用的gpu版本,貌似cpu版本也可以使用
安装命令:

conda install -c pytorch faiss-gpu

因为我看着有 -c pytorch, 为了不污染我原来的pytorch环境,所以新建了一个环境:

conda create -n faiss python==3.8
conda install -c pytorch faiss-gpu

其实是我多虑了, -c 是指通道,-c pytorch表示要从名为pytorch的channel中安装faiss-gpu软件包。
所以我又在常用的环境,运行了一下这个命令.

小试牛刀

faiss 是一个快速检索向量的应用,此时我们还需要一个提取特征向量的神经网络。
我选用的是:RepVGG
代码在16仓库的这里:/home/jianming_ge/workplace/zhongwaiyun/Faiss-ytst

import timm
import os
from timm.models.efficientnet import _cfg
# 查看vgg相关的模型
vgg_models = timm.list_models("*vgg*")
# ['repvgg_a2', 'repvgg_b0', 'repvgg_b1', 'repvgg_b1g4', 'repvgg_b2', 'repvgg_b2g4', 'repvgg_b3', 'repvgg_b3g4', 'vgg11', 'vgg11_bn', 'vgg13', 'vgg13_bn', 'vgg16', 'vgg16_bn', 'vgg19', 'vgg19_bn']  repvgg_b3g4 是网络结构最复杂的模型,抽取特征也最好

# weights_path=  os.path.join(os.path.dirname(os.path.abspath(__file__)),"weights","repvgg_b3g4-73c370bf.pth")
weights_path=  "/home/jianming_ge/workplace/zhongwaiyun/Faiss-ytst/weights/repvgg_b3g4-73c370bf.pth"
config = _cfg(url='', file=weights_path)

# 
model = timm.create_model('repvgg_b3g4',pretrained=True,features_only=True,pretrained_cfg=config)
model

在这里插入图片描述
---------------------------20230727------回来继续----------

用repVgg抽取向量

from PIL import Image
# 用repvgg抽取特征
img_path = "/home/jianming_ge/workplace/zhongwaiyun/Faiss-ytst/images/reflective_clothing/reflective_db/8.jpg"
image = Image.open(img_path)
image

在这里插入图片描述
转成tensor,并且转成Pytorch 所需要的格式

import torch
import numpy as np

image1 = torch.as_tensor(np.array(image, dtype=np.float32)).transpose(2,0)
image1.shape

torch.Size([3, 1920, 1920])
需要增加一个batchsize的纬度

#增加一个None 是为了增加一个纬度
image = torch.as_tensor(np.array(image, dtype=np.float32)).transpose(2,0)[None]
image.shape

torch.Size([1, 3, 1920, 1920])

# 可以看到这些图片的大小都不相等,所以要resize成大小相等的图片,在做特征抽取
tensor_list = []
for img_path in img_path_list:
    image = Image.open(img_path)
    image = torch.as_tensor(np.array(image, dtype=np.float32)).transpose(2,0)[None]
    feature_output = model.forward(image)
    print(feature_output[0].shape)
    tensor_list.append(feature_output[0])

torch.Size([1, 64, 155, 150])
torch.Size([1, 64, 1125, 2000])
torch.Size([1, 64, 1125, 2000])
torch.Size([1, 64, 960, 960])
torch.Size([1, 64, 400, 513])
torch.Size([1, 64, 960, 1294])
torch.Size([1, 64, 750, 1161])
torch.Size([1, 64, 540, 540])
torch.Size([1, 64, 1632, 1224])
torch.Size([1, 64, 188, 250])
torch.Size([1, 64, 204, 250])
torch.Size([1, 64, 188, 250])

因为图片大小不一样,所以需要resize相同的大小,数据对齐一下:

import torch
import torchvision.transforms as transforms
from PIL import Image

def image_to_tensor(image_path_list, resize_dim=(224, 224)):
    # 定义转换操作
    transform = transforms.Compose([
        transforms.Resize(resize_dim),
        transforms.ToTensor()
    ])

    # 创建空列表存储张量
    tensor_list = []

    for image_path in image_path_list:
        # 打开图片
        image = Image.open(image_path)

        # resize和转换为张量
        image_tensor = transform(image)

        # 添加到张量列表
        tensor_list.append(image_tensor)

    # 将张量列表堆叠为一个张量
    tensor_stack = torch.stack(tensor_list)

    return tensor_stack
 

# 将图片路径列表转换为张量
tensor = image_to_tensor(img_path_list,resize_dim=(640, 640))

tensor.shape

torch.Size([12, 3, 640, 640])

到此已经有个12个特征向量, 123640*640, 其实也不一定是要640,我是受yolov的影响写的640.

构建Faiss索引

import faiss
features = tensor.numpy()
N, _, H, W = tensor.shape
features_reshaped = features.reshape(N, -1).astype('float32')


# 构建Faiss索引
dimension = features_reshaped.shape[1]  # 特征向量的维度
index = faiss.IndexFlatL2(dimension)  # 使用L2距离度量的平面索引

# 添加特征向量到索引
index.add(features_reshaped)
features_reshaped.shape

(12, 1228800)
我理解faiss是把空间特征给展平放了,不知道这样是否对匹配精度影响多少,因为这样的话,就把空间信息丢了。

进行相似性搜索

# 3.进行相似性搜索:
test_img_path = "/home/jianming_ge/workplace/zhongwaiyun/Faiss-ytst/images/reflective_clothing/test_imgs/24.jpg"
query_vector_list = image_to_tensor([test_img_path], resize_dim=(640, 640))
query_vector = query_vector_list[0].reshape(1,dimension).numpy()
query_vector.shape

(1, 1228800)
返回top k=10 个相似的图片


distances, indices = index.search(query_vector, k)

# 输出结果
print("最相似的图像索引:", indices)
print("最相似的图像距离:", distances)

最相似的图像索引: [[10 5 9 8 6 4 2 1 7 11]]
最相似的图像距离: [[ 98840.35 105621.3 126307.59 131995.1 162313.53 162977.97 183604.77
184193.06 191399.08 215673.9 ]]

print("我是模板:")
Image.open(img_path_list[indices[0][0]])

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
原始图片是这个:
在这里插入图片描述

项目延伸

应该需要用目标监测把每个人都框出来,然后送入faiss,出来top5,看是否穿有反光衣。
这就是基本思路了,阈值要设定好,因为不清楚阈值在多大的时候合适。

总结

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/51381.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Mac下certificate verify failed: unable to get local issuer certificate

出现这个问题,可以安装证书 在finder中查找 Install Certificates.command找到后双击,或者使用其他终端打开 安装完即可

tcp三次握手python实现和结果

下载抓包工具 安装 使用1 使用2 结果 红色笔为想要发送的数据。 代码 from scapy.all import * import logginglogging.getLogger(scapy.runtime).setLevel(logging.ERROR)target_ip = 172.20.211.4 target_port = 80 data = GET / HTTP/1.0 \r\n\r\ndef start_tcp(target_…

Mac代码编辑器sublime text 4中文注册版下载

Sublime Text 4 for Mac简单实用功能强大,是程序员敲代码必备的代码编辑器,sublime text 4中文注册版支持多种编程语言,包括C、Java、Python、Ruby等,可以帮助程序员快速编写代码。Sublime Text的界面简洁、美观,支持多…

上传图片到腾讯云对象存储桶cos 【腾讯云对象存储桶】【cos】【el-upload】【vue3】【上传头像】【删除】

1、首先登录腾讯云官网控制台 进入对象存储页面 2、找到跨越访问CIRS设置 配置规则 点击添加规则 填写信息 3、书写代码 这里用VUE3书写 第一种用按钮出发事件形式 <template><div><input type"file" change"handleFileChange" /><…

【设计模式】详解观察者模式

文章目录 1、简介2、观察者模式简单实现抽象主题&#xff08;Subject&#xff09;具体主题&#xff08;ConcreteSubject&#xff09;抽象观察者&#xff08;Observer&#xff09;具体观察者&#xff08;ConcrereObserver&#xff09;测试&#xff1a; 观察者设计模式优缺点观察…

DataEase开源BI工具安装_数据全量_增量同步_大屏拖拽自动生成_多数据源支持_数据血缘分析---大数据工作笔记0183

我这里用的是Centos7.9安装的 可以通过uname -p来查看一下我们的电脑架构,可以看到是x86_64架构的 我们下第一个,这个是x86架构的,第二个arm架构的 然后解压到/opt/module中 然后再去重命名一下文件夹. 推荐200G 本地模式的功能比较多 推荐100G

【FPGA IP系列】FIFO的通俗理解

FPGA厂商提供了丰富的IP核&#xff0c;基础性IP核都是可以直接免费调用的&#xff0c;比如FIFO、RAM等等。 本文主要介绍FIFO的一些基础知识&#xff0c;帮助大家能够理解FIFO的基础概念。 一、FIFO介绍 FIFO全称是First In First Out&#xff0c;即先进先出。 FIFO是一个数…

C语言第十一课--------操作符的使用与分类-------基本操作

作者前言 作者介绍&#xff1a; 作者id&#xff1a;老秦包你会&#xff0c; 简单介绍&#xff1a; 喜欢学习C语言和python等编程语言&#xff0c;是一位爱分享的博主&#xff0c;有兴趣的小可爱可以来互讨 个人主页::小小页面 gitee页面:秦大大 一个爱分享的小博主 欢迎小可爱们…

7.27 作业 QT

要求&#xff1a; 结果图&#xff1a; clock.pro: QT core gui QT texttospeechgreaterThan(QT_MAJOR_VERSION, 4): QT widgetsCONFIG c11# The following define makes your compiler emit warnings if you use # any Qt feature that has been marked deprecated …

算法与数据结构(四)--排序算法

一.冒泡排序 原理图&#xff1a; 实现代码&#xff1a; /* 冒泡排序或者是沉底排序 *//* int arr[]: 排序目标数组,这里元素类型以整型为例; int len: 元素个数 */ void bubbleSort (elemType arr[], int len) {//为什么外循环小于len-1次&#xff1f;//考虑临界情况&#xf…

Power BI-云端报表定时刷新--ODBC、MySQL、Oracle等其他本地数据源的刷新(二)

ODBC数据源 一些小众的数据源无法直接连接&#xff0c;需要通过微软系统自带的应用“ODBC数据源”连接。 1.首次使用应安装对应数据库的ODBC驱动程序&#xff0c;Mysql的ODBC驱动需要手动安装 2.在web服务中进行数据源的配置 Mysql数据源 1.Powerbi与Gateway第一次连SQL…

Ansible安装部署与应用

文章目录 一、ansible简介二、ansible 环境安装部署三、ansible 命令行模块3.1 command 模块3.2 shell 模块3.3 cron 模块3.4 user 模块3.5 group 模块3.6 copy 模块3.7 file 模块3.8 hostname 模块3.9 ping 模块3.10 yum 模块3.11 service/systemd 模块3.12 script 模块3.13 m…

Staples Drop Ship EDI 需求分析

Staples 是一家美国零售公司&#xff0c;总部位于马萨诸塞州弗拉明汉&#xff0c;主要提供支持工作和学习的产品和服务。该公司于 1986 年在马萨诸塞州布莱顿开设了第一家门店。到 1996 年&#xff0c;该公司已跻身《财富》世界 500 强&#xff0c;后来又收购了办公用品公司 Qu…

Blazor前后端框架Known-V1.2.8

V1.2.8 Known是基于C#和Blazor开发的前后端分离快速开发框架&#xff0c;开箱即用&#xff0c;跨平台&#xff0c;一处代码&#xff0c;多处运行。 Gitee&#xff1a; https://gitee.com/known/KnownGithub&#xff1a;https://github.com/known/Known 概述 基于C#和Blazor…

【文献分享】动态环境下竟然能实现实时语义RGB-D SLAM??

论文题目&#xff1a;Towards Real-time Semantic RGB-D SLAM in Dynamic Environments 中文题目&#xff1a;动态环境下实时语义RGB-D SLAM研究 作者&#xff1a;Tete Ji, Chen Wang, and Lihua Xie 作者机构&#xff1a;新加坡南洋理工大学电气与电子工程学院 卡内基梅隆大…

C++赋值运算符重载

运算符重载 C为了增强代码的可读性引入了运算符重载&#xff0c;运算符重载是具有特殊函数名的函数函数名字&#xff1a;关键字operator后面接需要重载的运算符符号函数模型&#xff1a;返回值类型 operator操作符(参数列表) 注意事项&#xff1a; 1 不能通过连接其他符号…

【C++】开源:Muduo网络库配置与使用

&#x1f60f;★,:.☆(&#xffe3;▽&#xffe3;)/$:.★ &#x1f60f; 这篇文章主要介绍Muduo网络库配置与使用。 无专精则不能成&#xff0c;无涉猎则不能通。——梁启超 欢迎来到我的博客&#xff0c;一起学习&#xff0c;共同进步。 喜欢的朋友可以关注一下&#xff0c;下…

网络知识整理

网络知识整理 网络拓扑网关默认网关 数据传输拓扑结构层面协议层面 网络拓扑 网关 连接两个不同的网络的设备都可以叫网关设备&#xff0c;网关的作用就是实现两个网络之间进行通讯与控制。 网关设备可以是交换机(三层及以上才能跨网络) 、路由器、启用了路由协议的服务器、代…

【Docker】云原生利用Docker确保环境安全、部署的安全性、安全问题的主要表现和新兴技术产生的详细讲解

前言 Docker 是一个开源的应用容器引擎&#xff0c;让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux或Windows操作系统的机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。 &#x1f4d5;作者简介&#xff1a;热…

matplotlib实现动态显示图片

plt.ion()打开交互开关 plt.ioff()关闭交互开关 plt.pause(0.1)暂停0.1秒 plt.clf()#清除当前的Figure图像 plt.cla()#清除当前的Axex图像 import matplotlib.pyplot as plt import numpy as np import time from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg…