DBU-Net:用于乳腺超声图像中肿瘤分割的双分支U形网络

DBU-Net:用于乳腺超声图像中肿瘤分割的双分支U形网络

  • 摘要
  • 引言
  • 材料和方法
  • 概述所提出的方法

DBU-Net Dual branch U-Net for tumor segmentation in breast ultrasound images

摘要

乳腺超声医学图像通常具有低成像质量沿着不清楚的目标边界。这些问题使得医生在诊断患者时准确识别和概述肿瘤具有挑战性。由于精确的分割是至关重要的诊断,有一个强烈的需要,自动化的方法来提高分割的准确性,这可以作为一个技术辅助诊断。最近,U-Net及其变体在医学图像分割中取得了巨大的成功。在这项研究中,从U-Net概念中汲取灵感,我们提出了一种新的U-Net架构变体,称为DBU-Net,用于乳腺超声图像中的肿瘤分割。为了提高编码器的特征提取能力,我们引入了一种新的方法,涉及利用两个不同的编码路径。在第一条路径中,使用原始图像,而在第二条路径中,我们使用使用Roberts边缘过滤器创建的图像,其中边缘被突出显示。这种双分支编码策略有助于通过相互信息的学习过程来提取语义丰富的信息。在编码器的每一级,两个分支独立地经历两个卷积层,然后是池化层。为了促进分支之间的交叉学习,实现了加权加法方案。这些权重通过考虑相对于损失函数的梯度来动态学习。我们评估了我们提出的DBU-Net模型在两个数据集上的性能,即BUSI和UDIAT,我们的实验结果表明,与最先进的模型相比,它具有上级性能。

引言

乳腺癌对女性健康构成重大威胁,占全球癌症总发病率的11.7%,超过肺癌成为最常见的癌症[1]。早期发现在提供及时的临床决策、治疗和康复计划方面起着至关重要的作用,最终降低死亡率。乳腺癌通常通过体检、成像技术(如乳房X线摄影、超声和乳腺磁共振成像(MRI))以及活检等方法检测[2]。然而,体格检查可能具有挑战性,以区分恶性和良性病变,可能需要经验。活检被认为是确定病变性质的金标准,但可能是一个痛苦和不方便的过程,有时需要多次尝试。在偏远或资源匮乏的地区,活检实验室的使用也可能受到限制,导致诊断延误。
为了减少不必要的活检和不舒服的体检,超声成像是一种有吸引力的替代乳房X线摄影和MRI,由于其提高灵敏度,缺乏辐射,成本低,广泛可用。然而,超声成像有几个局限性,包括低对比度,分辨率差,模糊的边缘,由于噪声,如斑点,声学阴影,和模糊的周围组织。因此,超声图像中的乳腺肿瘤诊断对于放射科医生来说仍然是耗时的、具有挑战性的和主观的。为了简化这一过程,已经开发了计算机辅助诊断(CAD)系统,提供可靠的结果和简化操作[3]。这些方法被认为是成本效益和节省时间。值得注意的是,乳腺癌的发生在低收入或中等收入国家更令人担忧。与发达国家相比,这些国家中的大多数国家的医疗保健基础设施往往不太发达。这对大多数容易感染这些潜在致命疾病(如乳腺癌)的人群构成了重大挑战[4]。CAD系统可以作为医疗行业的宝贵工具,在医疗保健的各个领域实现具有成本效益的解决方案[5-10]。
乳腺癌区域的分割是识别乳腺癌病灶的重要步骤之一。医学图像分割旨在识别和隔离图像中具有重要医学意义的特定区域。通过这样做,可以突出相关领域或感兴趣的区域,这可以用作临床诊断和病理学研究的可靠基础[11,12]。然而,医学图像分析提出了一些挑战,如纹理,形状和个体差异的变化,这使得手动注释在临床环境中的普遍做法。这一过程很耗时,需要专门知识。因此,越来越需要准确可靠的自动分割方法。这些方法可以减少临床专家的工作量,帮助他们提高效率[11]。在文献中,许多分割程序已被各种研究人员采用。在典型的图像分割过程中,考虑输入图像,并且期望相应的分割图作为输出。
自过去十年深度学习兴起以来,基于卷积神经网络(CNN)的模型在各种图像分割任务中取得了显着进展[13-18]。2015年,Jonathan等人[19]开始探索CNN的应用,以端到端的方式执行自动分割任务。他们引入了一种称为全卷积神经网络(FCN)的新型架构,该架构以端到端的方式使用CNN进行图像分割。然而,与ImageNet不同的是,医学图像数据集通常包含高度相似的图像,这使得使用FCN提取足够的上下文信息和感受野具有挑战性。这可能导致分割性能差[20]。为了解决这个问题,研究人员提出了先进的框架来提高效率。一种流行的方法是U-Net [21],它基于FCN,但可以提取更丰富的上下文信息,具有更充分的感受野,从而提高医学图像分割的性能。U-Net是医学图像分割中广泛使用的网络,因为它能够通过跳过连接来提取上下文信息。该网络具有编码器-解码器设置,其中编码器对图像进行下采样以提取特征,而解码器利用这些特征(来自编码器)通过跳过连接的帮助对输出分割掩码进行上采样。这允许网络获得不同粒度的特征,从而生成改进的分割掩码。跳跃连接的存在促进了从编码器到解码器的低级到高级特征的转移,这最终导致对上下文信息的增强理解。总体而言,U-Net通过跳过连接连接上下文信息的有效性使其成为医学图像分割的热门选择[22,23]。
在U-Net出现之后,人们提出了一些新的方法来提高医学图像分割的性能。例如,Deep Residual U-Net [24]将残差块集成到编码器和解码器层中,这加深了网络并增强了其性能。其他模型,如Alom等人的RCNN和R2 CNN [25],使用循环机制来积累特征。BCDUNet [26]使用双向ConvLSTM而不是skip连接,并将一个密集卷积块应用于底部编码层。注意力机制也被引入到U-Net的跳跃连接中[27]。为了解决在U-Net的常规跳过连接中混合语义上不同的特征的问题,U-Net++ [28]用嵌套和密集的跳过连接增强了标准跳过连接。U-Net++实现了一种深度监控机制,允许删除密集的网络结构,从而增加了模型的灵活性。除了改变神经网络的架构,研究人员还考虑并研究了修改这些网络中使用的内核大小的可能性[29]。
虽然这些模型在医学图像分割的某些任务中已经达到了最先进的性能,但它们主要集中在修改上下文特征提取概念以及在编码器和解码器之间传递信息上。这种方法由于没有考虑同时提取空间信息和上下文信息,可能会导致边界区域像素的误分类。这些网络中的每一个,例如UNet++、R2 CNN以及许多其他网络,都利用了由编码器提取的特征的某些特征,这些特征进一步用于生成分割掩码。在这个深度分割网络池中,很少有方法专注于通过使用边缘检测来丰富编码特征。从视觉角度来看,特定对象的边缘可以用于定位对象。受这一想法的启发,在这项工作中,我们提出了一个基于端到端深度神经网络的分割网络,称为DBU-Net,它融合了边缘和原始图像的信息。每个分支学习到的编码信息融合了原始图像的Roberts边缘信息和编码信息。最终的目标是本地化的背景,以产生一个更好的分割掩模,它可以作为一个支持工具,以医疗专业人员的廉价,强大和快速诊断乳腺癌。
本文的主要贡献概括如下:
·介绍了一种新的医学图像精确分割方法DBU-Net。与普通的U-Net不同,我们更加强调编码器路径中的特征提取过程,并提出了一个双编码器模型。
·我们提出的方法涉及利用两个单独的输入路径进行编码过程。其中一个分支包含原始图像,另一个分支使用从原始图像获得的Roberts边缘信息。
·采用双分支编码策略,利用交叉学习方法丰富潜在空间中的语义信息。为了便于交叉学习,利用加权加法机制,而权重是基于模型训练期间的损失梯度来确定的。
·在两个乳腺癌数据集,即BUSI和UDIAT上评估所提出的方法的性能。结果非常令人鼓舞,在BUSI和UDIAT数据集上分别获得了74.34%和77.46%的IoU评分以及85.28%和87.28%的Dice评分。
论文的其余部分结构如下。首先,描述了所提出的方法和所使用的数据集。接下来,给出了实验结果和分析,并对结果进行了讨论。最后,我们总结了我们的工作,并指出了一些局限性和未来的扩展可能性。

材料和方法

在本节中,我们首先对实验所用的数据集进行了全面的解释,然后对我们提出的模型进行了全面的讨论。
数据集描述
在本研究中,使用BUSI [30]数据集对所提出的技术进行训练和评估。2018年,收集了600名年龄在25至75岁之间的女性患者的BUSI数据集。基线数据包括乳腺超声图像,平均图像大小为500 × 500像素,PNG格式。该数据集包含780张图像沿着,这些图像带有被分类为三类的真实掩模:正常、良性和恶性。然而,我们已经考虑了当前任务的良性和恶性图像。图1示出了样本图像沿着以及从数据集获取的掩模。表1显示了BUSI图像在三个类别中的分布。
数据预处理和分区—五折交叉验证–二八分
在本节中,我们讨论了我们应用于BUSI数据集图像的数据预处理和分区技术。共647图像从良性和恶性类考虑。由于正常图像没有标签掩码,从当前任务中排除了133个正常图像实例。为了解决原始BUSI图像大小不一致的问题,我们将所有图像调整为256 × 256像素的统一大小。为了优化计算资源,我们通过将像素值从0到255的原始范围缩放到0到1的新范围来执行图像归一化。这是通过将每个像素值除以最大可能像素值(255)来实现的。此外,有17个病例(16个良性病例和1个恶性病例)具有多个掩模,即,这里,对于每个图像,存在多个掩模,但是都属于同一类。在这些情况下,我们将相关的掩码合并在一起以获得单个掩码。这种类型的一个图像如图2所示。
此外,我们使用五重交叉验证方法将数据集分为训练集和测试集。5折交叉验证方法涉及将数据集分成5个相等大小的组,称为折叠。在实验过程中,学习模型在5个折叠中的4个上进行训练,剩余的折叠用于测试。这个过程是重复的所有可能的组合oftraining和测试folds。

概述所提出的方法

U-Net架构由两个组件组成:1)编码器(收缩路径),和2)解码器(扩展路径)。基本结构考虑以离散连续的方式从编码器到解码器的映射。然而,必须注意的是,我们通常只在U-Net中使用CNN。在这项工作中,受U-Net思想的启发,我们提出使用两个由独立输入组成的编码路径。其中一个分支使用原始图像,第二个分支使用Roberts边缘图像,这种双分支编码方案主要是通过交叉学习的方式来丰富潜在空间中的语义信息。在编码器的每一级中,分支分别由两级卷积和池化组成。最后,对于交叉学习,我们利用加权加法方案,其中考虑梯度w.r.t.失去亲人图3提供了整个管道的综合视图。
Dual encoding branch–双重编码分支
图1显示了图像在从图像中分割出病变方面存在重大挑战。这项工作的主要目的是准确地识别包含病变的区域,但在视觉上很明显,病变有时会出现中空。这在区分边界区域方面产生了相当大的困难,这进一步由于整个图像中纹理的相似性而变得复杂。因此,准确地突出边界区域以产生有效的分割图至关重要。我们通过利用Roberts边缘信息来编码和突出显示区域,从而提高分割图的质量来解决这一挑战。确切地说,双分支编码模块考虑两个分支的两个输入。每个分支有两级卷积,滤波器大小为3 × 3。这些卷积中的每一个之后都是整流线性单元(ReLU)激活。在卷积之后,为了降维,我们使用2 × 2窗口大小的Maxpooling操作来池化这些特征,窗口的步幅等于(2,2)。这一过程之后的辍学率为0.2。
我们以一种独特的方式融合这些特征,以庆祝交叉学习。简单地说,我们使用一种融合的方法来实现输入中不同类型特征之间的详细信息交换。这是通过为每种类型的处理后的特征图分配相等的权重来完成的,然后使用适当的优化器在整个网络中优化这些权重。这是根据等式(8)实现的,其中Fx是一种类型的经处理的特征图,Fy是另一种类型的输入,Wi是权重值,其中i 2 {x,y}。运算符(+)和(�)分别是简单的加法和乘法。我们最初将这些值设置为1。我们通过使用适当的优化器优化整个网络来进一步优化这些权重。通过添加原始输入,我们保留了每个生成的特征图的唯一性,并防止两个分支变得相同。这确保了这两种类型的特性在网络的每一层都得到了利用。所提出的DBU-Net模型的架构如图5所示。
在这里插入图片描述
在这里插入图片描述
Decoding: The expansive path–
在网络的扩展路径中,每一步都涉及到增加特征映射的大小,然后进行2 × 2卷积,将特征通道的数量减少一半。然后将得到的特征图与收缩路径中相应的裁剪特征图连接起来,这是必要的,因为在卷积过程中会丢失边界像素。然后应用两个3 × 3卷积,每个卷积后面都有一个ReLU。网络的最后一层使用1 × 1卷积将每个特征向量映射到所需的类别数量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/513166.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

详解k8s集群内外的访问方式

文章目录 1、集群内访问2、集群外访问2.1、Ingress转发外网请求2.2、LoadBanlancer接入外网请求2.3、NodePort接入外网请求 3、总结和对比3.1、Ingress、NodePort和LoadBalancer总结3.2、Ingress和网关的区别 1、集群内访问 在k8s中创建的微服务,大部分都是在集群内…

收下这份地表最强参会指南,4月16日,玩转百度Create大会不迷路

欢迎来到英杰社区: https://bbs.csdn.net/topics/617804998 欢迎来到阿Q社区: https://bbs.csdn.net/topics/617897397 📕作者简介:热爱跑步的恒川,致力于C/C、Java、Python等多编程语言,热爱跑步&#xff…

短视频素材怎么做?探索新鲜网站获取灵感

在短视频创作的过程中,寻找和制作高质量的素材是至关重要的。那么,短视频素材怎么做呢?让我们一起探索一些新鲜的网站,获取灵感和素材,让你的短视频作品更加别出心裁! 蛙学网——中国 国内首推荐蛙学网&a…

dm控制台工具console

DM控制台工具console console工具介绍 DM控制台工具是管理和维护数据库的基本工具。 通过使用控制台工具,数据库管理员可以完成以下功能: ◆服务器参数配置 ◆管理DM服务 ◆脱机备份与还原 ◆查看系统信息 ◆查看许可证信息 一 登录console [dmdbatest1 tool]$ pwd…

3.java openCV4.x 入门-数据类型(CvType)与Scalar

专栏简介 💒个人主页 📰专栏目录 点击上方查看更多内容 📖心灵鸡汤📖我们唯一拥有的就是今天,唯一能把握的也是今天 🧭文章导航🧭 ⬆️ 2.hello openCV ⬇️ 4.待更新 数据类型&#xff…

【算法】字典序超详细解析(让你有一种相见恨晚的感觉!)

目录 一、前言 二、什么是字典序 ? ✨字典序概念 ✨深度理解字典序 ✨字典序排序的重要性和应用场景 三、常考面试题 ✨ 下一个排列 ✨ 字典数排序 ✨ 字典序最小回文串 四、共勉 一、前言 经常刷算法题的朋友,肯定会经常看到题目中提到 字典序 这样…

AutoMQ 如何实现分区持续重平衡?

01 引言 在一个线上 Kafka 集群中,流量的波动、Topic 的创建和删除、Broker 的消亡和启动都随时可能发生,而这些变化可能导致流量在集群各个节点间分布不均,从而导致资源浪费、影响业务稳定。此时则需要主动将 Topic 的不同分区在各个节点间…

mysql 磁盘空间100%

MySQL大事务可能会导致过多的占用临时文件,导致磁盘空间撑满的问题 本例说明下binlog cache产生的临时文件 案例复现 调小binlog_cache_size,让DML使用临时文件 使用存储过程模拟大事务 创建表 create table t1( id int AUTO_INCREMENT, name varchar…

[蓝桥杯练习]通电

kruskal做法(加边) #include <bits/stdc.h> using namespace std; int x[10005],y[10005],z[10005];//存储i点的x与y坐标 int bcj[10005];//并查集 struct Edge{//边 int v1,v2; double w; }edge[2000005]; int cmp(Edge a, Edge b){return a.w < b.w;} int find(i…

视频素材库哪个网站最好?推荐六大视频素材库

大家好&#xff01;在视频创作的旅程中&#xff0c;找到一个好的视频素材库就像找到了一把打开宝藏的钥匙。那么&#xff0c;视频素材库哪个网站最好呢&#xff1f;今天&#xff0c;我要给大家推荐六个主流的视频素材分享网站&#xff0c;让你的视频制作更加轻松&#xff0c;在…

Goby 漏洞发布|浙大恩特客户资源管理系统 RegulatePriceAction SQL 注入漏洞

漏洞名称&#xff1a; 浙大恩特客户资源管理系统 RegulatePriceAction SQL 注入漏洞 English Name&#xff1a; Entsoft Duite Customer Resource Management System RegulatePriceAction API SQL Injection Vulnerability CVSS core: 9.3 影响资产数&#xff1a;10524 漏洞…

揭秘!自定义三维模型如何在RflySim中实现仿真(二)

一. 技术背景 揭秘&#xff01;自定义三维模型如何在RflySim中实现仿真&#xff08;一&#xff09; 上篇文章我们学习了自定义三维模型如何在RflySim中实现仿真&#xff0c;接下来要学习三维场景导入RflySim的实验&#xff1a;将UE4自带场景导入RflySim平台&#xff0c;熟悉从…

Vue项目中引入外部字体文件

1、导入字体文件&#xff08; .ttf格式&#xff09; 1.下载相应的字体文件&#xff0c;或者找ui设计师要一份。一般字体文件使用 .ttf 格式的即可。 将准备好的字体文件&#xff0c;放在项目中&#xff0c;文件目录示例如下&#xff1a; 2.创建一个font.css文件用于定义这个字…

zookeeper快速入门四:在java客户端中操作zookeeper

系列文章&#xff1a; zookeeper快速入门一&#xff1a;zookeeper安装与启动-CSDN博客 zookeeper快速入门二&#xff1a;zookeeper基本概念-CSDN博客 zookeeper快速入门三&#xff1a;zookeeper的基本操作 先启动zookeeper服务端。 在maven引入zookeeper依赖。 <depende…

C++项目——集群聊天服务器项目(十三)客户端登录、注册、退出业务

截止到上节&#xff0c;我们已将服务器端主要代码介绍完毕&#xff0c;由于不可能一直手动输入信息&#xff0c;所以我们还需编写客户端代码&#xff0c;进行双向通信。 客户端不要求高并发&#xff0c;因此我们这里不使用muduo网络库的TcpClient类编写&#xff0c;仅采用C自带…

ComplexHeatmap绘图:注释、图例、热图基础(自备)

目录 基础介绍 Heatmap绘图基础参数 数据 作图参数 Heatmap Annotations&#xff08;注释&#xff09; 基础注释设置 简单注释测试 anno_points散点注释 anno_lines连线注释 anno_barplot条形图 anno_boxplot箱线图 anno_histogram直方图 热图组合 基础组合 进行…

使用idea一次性删除java文件中所有的注释内容 /* */

将.class文件转成.java文件后&#xff0c;.java文件每行都会生成注释/* */&#xff0c;下面是通过idea的替换功能&#xff0c;使用正则表达式删除注释/* */。 我使用MacBook&#xff0c;commandR打开替换查找替换界面&#xff0c;第一步选中 .* &#xff0c;第二步在…

虚拟机与开发板之间互传文件、文件夹

1.配置桥接模式实现外网访问 1.1设置 VMnet0 要桥接的网卡 打开【编辑】-【虚拟网络编辑器】 选择【更改设置】 选择【VMnet0】&#xff0c;选择桥接到宿主机上的哪个网卡。 通过打开安装虚拟机的宿主机的【网络适配器】&#xff0c;可以查看网卡名称。 1.2虚拟机配置桥接模式…

Idea2023创建Servlet项目

① Java EE 只是一个抽象的规范&#xff0c;具体实现称为应用服务器。 ② Java EE 只需要两个包 jsp-api.jar 和 servlet-api.jar&#xff0c;而这两个包是没有官方版本的。也就是说&#xff0c;Java 没有提供这两个包&#xff0c;只提供了一个规范。那么这两个包是谁提供的…

Java23种常见设计模式汇总

七大原则网站地址&#xff1a;设计模式7大原则&#xff0b;类图关系-CSDN博客 创建型设计模式&#xff1a;创建型设计模式合集-CSDN博客 七大结构型设计模式&#xff1a;7大结构型设计模式-CSDN博客 11种行为型设计模式&#xff1a; 11种行为型模式&#xff08;上&#xff0…