[C++]使用OpenCV去除面积较小的连通域

这是后期补充的部分,和前期的代码不太一样

效果图

源代码

//测试
void CCutImageVS2013Dlg::OnBnClickedTestButton1()
{
	vector<vector<Point> > contours;  //轮廓数组
	vector<Point2d> centers;    //轮廓质心坐标 
	vector<vector<Point> >::iterator itr; //轮廓迭代器
	vector<Point2d>::iterator itrc;  //质心坐标迭代器
	vector<vector<Point> > con;   //当前轮廓

	double area;
	double minarea = 1000;
	double maxarea = 0;
	Moments mom;       // 轮廓矩
	Mat image, gray, edge, dst;
	image = imread("D:\\66.png");
	cvtColor(image, gray, COLOR_BGR2GRAY);
	Mat rgbImg(gray.size(), CV_8UC3); //创建三通道图
	blur(gray, edge, Size(3, 3));       //模糊去噪
	threshold(edge, edge, 200, 255, THRESH_BINARY_INV); //二值化处理,黑底白字
	//--------去除较小轮廓,并寻找最大轮廓--------------------------
	findContours(edge, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE); //寻找轮廓
	itr = contours.begin();    //使用迭代器去除噪声轮廓
	while (itr != contours.end())
	{
		area = contourArea(*itr);  //获得轮廓面积
		if (area<minarea)    //删除较小面积的轮廓 
		{
			itr = contours.erase(itr); //itr一旦erase,需要重新赋值
		}
		else
		{
			itr++;
		}
		if (area>maxarea)    //寻找最大轮廓
		{
			maxarea = area;
		}
	}
	dst = Mat::zeros(image.rows, image.cols, CV_8UC3);
	/*绘制连通区域轮廓,计算质心坐标*/
	Point2d center;
	itr = contours.begin();
	while (itr != contours.end())
	{
		area = contourArea(*itr);		
		con.push_back(*itr);   //获取当前轮廓
		if (area == maxarea)
		{
			vector<Rect> boundRect(1); //定义外接矩形集合
			boundRect[0] = boundingRect(Mat(*itr));
			cvtColor(gray, rgbImg, COLOR_GRAY2BGR);
			Rect select;
			select.x = boundRect[0].x;
			select.y = boundRect[0].y;
			select.width = boundRect[0].width;
			select.height = boundRect[0].height;
			rectangle(rgbImg, select, Scalar(0, 255, 0), 3, 2); //用矩形画矩形窗
			drawContours(dst, con, -1, Scalar(0, 0, 255), 2); //最大面积红色绘制
		}
		else
			drawContours(dst, con, -1, Scalar(255, 0, 0), 2); //其它面积蓝色绘制
		con.pop_back();
		//计算质心
		mom = moments(*itr);
		center.x = (int)(mom.m10 / mom.m00);
		center.y = (int)(mom.m01 / mom.m00);
		centers.push_back(center);
		itr++;
	}
	imshow("rgbImg", rgbImg);
	//imshow("gray", gray);
	//imshow("edge", edge);
	imshow("origin", image);
	imshow("connected_region", dst);
	waitKey(0);
	return;
}

前期做的,方法可能不太一样

一,先看效果图

原图

处理前后图

 

二,实现源代码

//=======函数实现=====================================================================
void RemoveSmallRegion(Mat &Src, Mat &Dst, int AreaLimit, int CheckMode, int NeihborMode)
{
	int RemoveCount = 0;
	//新建一幅标签图像初始化为0像素点,为了记录每个像素点检验状态的标签,0代表未检查,1代表正在检查,2代表检查不合格(需要反转颜色),3代表检查合格或不需检查 
	//初始化的图像全部为0,未检查 
	Mat PointLabel = Mat::zeros(Src.size(), CV_8UC1);
	if (CheckMode == 1)//去除小连通区域的白色点 
	{
		//cout << "去除小连通域.";
		for (int i = 0; i < Src.rows; i++)
		{
			for (int j = 0; j < Src.cols; j++)
			{
				if (Src.at<uchar>(i, j) < 10)
				{
					PointLabel.at<uchar>(i, j) = 3;//将背景黑色点标记为合格,像素为3 
				}
			}
		}
	}
	else//去除孔洞,黑色点像素 
	{
		//cout << "去除孔洞";
		for (int i = 0; i < Src.rows; i++)
		{
			for (int j = 0; j < Src.cols; j++)
			{
				if (Src.at<uchar>(i, j) > 10)
				{
					PointLabel.at<uchar>(i, j) = 3;//如果原图是白色区域,标记为合格,像素为3 
				}
			}
		}
	}
	vector<Point2i>NeihborPos;//将邻域压进容器 
	NeihborPos.push_back(Point2i(-1, 0));
	NeihborPos.push_back(Point2i(1, 0));
	NeihborPos.push_back(Point2i(0, -1));
	NeihborPos.push_back(Point2i(0, 1));
	if (NeihborMode == 1)
	{
		//cout << "Neighbor mode: 8邻域." << endl;
		NeihborPos.push_back(Point2i(-1, -1));
		NeihborPos.push_back(Point2i(-1, 1));
		NeihborPos.push_back(Point2i(1, -1));
		NeihborPos.push_back(Point2i(1, 1));
	}
	else int a = 0;//cout << "Neighbor mode: 4邻域." << endl;
	int NeihborCount = 4 + 4 * NeihborMode;
	int CurrX = 0, CurrY = 0;
	//开始检测 
	for (int i = 0; i < Src.rows; i++)
	{
		for (int j = 0; j < Src.cols; j++)
		{
			if (PointLabel.at<uchar>(i, j) == 0)//标签图像像素点为0,表示还未检查的不合格点 
			{ //开始检查 
				vector<Point2i>GrowBuffer;//记录检查像素点的个数 
				GrowBuffer.push_back(Point2i(j, i));
				PointLabel.at<uchar>(i, j) = 1;//标记为正在检查 
				int CheckResult = 0;
				for (int z = 0; z < GrowBuffer.size(); z++)
				{
					for (int q = 0; q < NeihborCount; q++)
					{
						CurrX = GrowBuffer.at(z).x + NeihborPos.at(q).x;
						CurrY = GrowBuffer.at(z).y + NeihborPos.at(q).y;
						if (CurrX >= 0 && CurrX<Src.cols&&CurrY >= 0 && CurrY<Src.rows) //防止越界 
						{
							if (PointLabel.at<uchar>(CurrY, CurrX) == 0)
							{
								GrowBuffer.push_back(Point2i(CurrX, CurrY)); //邻域点加入buffer 
								PointLabel.at<uchar>(CurrY, CurrX) = 1;   //更新邻域点的检查标签,避免重复检查 
							}
						}
					}
				}
				if (GrowBuffer.size()>AreaLimit) //判断结果(是否超出限定的大小),1为未超出,2为超出 
					CheckResult = 2;
				else
				{
					CheckResult = 1;
					RemoveCount++;//记录有多少区域被去除 
				}
				for (int z = 0; z < GrowBuffer.size(); z++)
				{
					CurrX = GrowBuffer.at(z).x;
					CurrY = GrowBuffer.at(z).y;
					PointLabel.at<uchar>(CurrY, CurrX) += CheckResult;//标记不合格的像素点,像素值为2 
				}
				//********结束该点处的检查********** 
			}
		}
	}
	CheckMode = 255 * (1 - CheckMode);
	//开始反转面积过小的区域 
	for (int i = 0; i < Src.rows; ++i)
	{
		for (int j = 0; j < Src.cols; ++j)
		{
			if (PointLabel.at<uchar>(i, j) == 2)
			{
				Dst.at<uchar>(i, j) = CheckMode;
			}
			else if (PointLabel.at<uchar>(i, j) == 3)
			{
				Dst.at<uchar>(i, j) = Src.at<uchar>(i, j);
			}
		}
	}
	//cout << RemoveCount << " objects removed." << endl;
}
//=======函数实现=====================================================================
//=======调用函数=====================================================================
	Mat img;
	img = imread("D:\\1_1.jpg", 0);//读取图片
	threshold(img, img, 128, 255, CV_THRESH_BINARY_INV);
	imshow("去除前", img);
	Mat img1;
	RemoveSmallRegion(img, img, 200, 0, 1);
	imshow("去除后", img);
	waitKey(0);
//=======调用函数=====================================================================

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/512094.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深度学习理论基础(五)卷积神经网络CNN

目录 前述&#xff1a;卷积神经网络基础1.卷积网络流程2.卷积网络核心3.卷积下采样4.卷积上采样--转置卷积 一、卷积神经网络层1.卷积层&#xff08;1&#xff09;内部参数&#xff1a;卷积核权重&#xff08;2&#xff09;内部参数&#xff1a;偏置&#xff08;3&#xff09;外…

网络安全 | 什么是DDoS攻击?

关注WX&#xff1a;CodingTechWork DDoS-介绍 DoS&#xff1a;Denial of Service&#xff0c;拒绝服务。DDoS是通过大规模的网络流量使得正常流量不能访问受害者目标&#xff0c;是一种压垮性的网络攻击&#xff0c;而不是一种入侵手段。NTP网络时间协议&#xff0c;设备需要…

Kaggle:收入分类

先看一下数据的统计信息 import pandas as pd # 加载数据&#xff08;保留原路径&#xff0c;但在实际应用中建议使用相对路径或环境变量&#xff09; data pd.read_csv(r"C:\Users\11794\Desktop\收入分类\training.csv", encodingutf-8, encoding_errorsrepl…

HTML - 请你谈一谈img标签图片和background背景图片的区别

难度级别&#xff1a;中级及以上 提问概率&#xff1a;65% 面试官当然不会问如何使用img标签或者background来加载一张图片&#xff0c;这些知识点都很基础&#xff0c;相信只要从事前端开发一小段时间以后&#xff0c;就可以轻松搞定加载图片…

MFC通用静态库制作与使用

开发环境VS2013 1、新建工程&#xff0c;选择Win32 Project&#xff0c;命名&#xff0c;选择路径等 2、选择Static library &#xff0c;勾选MFC 3、点击完成。在工程中添加相应的头文件、源文件等通用功能函数或者类。 4、在其他工程引入使用。在使用的工程项目设置中Linker…

HarmonyOS 应用开发之通过数据管理服务实现数据共享静默访问

场景介绍 典型跨应用访问数据的用户场景下&#xff0c;数据提供方会存在多次被拉起的情况。 为了降低数据提供方拉起次数&#xff0c;提高访问速度&#xff0c;OpenHarmony提供了一种不拉起数据提供方直接访问数据库的方式&#xff0c;即静默数据访问。 静默数据访问通过数据…

基于Python+Tkinter实现一个贪食蛇小游戏

你是否还记得那个时代&#xff0c;当我们的手机还没有触摸屏&#xff0c;游戏也只有像“贪食蛇”这样的经典款&#xff1f;当时&#xff0c;许多人都沉迷于控制一条小蛇吃食物的乐趣中。而今&#xff0c;让我们利用Python和Tkinter&#xff0c;一起重温那个时代&#xff0c;制作…

程序汪10万接的多平台视频分发项目,模拟人工发视频

本项目来自程序汪背后的私活小团队&#xff0c;开发了一个多平台分发视频项目&#xff0c;给粉丝分享一下解决方案和具体项目分开情况付款情况等等细节&#xff0c;希望给想接私活的朋友一些经验参考 程序汪10万接的多平台视频分发项目&#xff0c;模拟人工发视频 视频版本 在 …

LabVIEW挖坑指南

一、挖坑指南 1.1、输出变量放在条件框内 错误写法&#xff1a; 现象&#xff1a;如果没进入对应的分支&#xff0c;输出为默认值 正常写法&#xff1a; 让每个分支输出的值都在预料之内。 1.2、统计耗时不准 错误写法 现象&#xff1a;统计出来的耗时是2000ms 正常写法&a…

redis发布订阅模式

需要两个终端。 首先我们打开第一个终端&#xff0c;使用SUBSCRIBE命令来订阅一个频道。 打开另一个终端&#xff0c;发布信息使用PUBLISH&#xff0c;后面加上频道的名称和消息的内容 返回去看第一个终端 订阅频道的终端可以有多个。但是订阅频道有一些局限性&#xff0c;比如…

【web】nginx+php-fpm云导航项目部署-(简版)

一、yum安装nginx yum -y install nginx 二、php环境安装 2.1 php安装 yum -y install php 2.2 php-fpm安装 yum -y install php-fpm 注&#xff1a;PHP在 5.3.3 之后已经讲php-fpm写入php源码核心了。 2.3 项目依赖的php-xml和php-xmlrpc安装 yum -y install php-…

展馆设计中融入数字化和智能化元素

一、多媒体技术的应用 展馆设计公司可以通过应用多媒体技术&#xff0c;为展馆创造一个数字化和互动式的环境。利用投影技术、触摸屏和交互式设备&#xff0c;可以实现展示内容的多样化和互动式展示。通过数字化的展示方式&#xff0c;观众可以更加深入地了解和体验展示内容&am…

【HTML】注册页面制作 案例二

&#xff08;大家好&#xff0c;今天我们将通过案例实战对之前学习过的HTML标签知识进行复习巩固&#xff0c;大家和我一起来吧&#xff0c;加油&#xff01;&#x1f495;&#xff09; 案例复习 通过综合案例&#xff0c;主要复习&#xff1a; 表格标签&#xff0c;可以让内容…

基于深度学习的危险物品检测系统(网页版+YOLOv8/v7/v6/v5代码+训练数据集)

摘要&#xff1a;本文详细介绍基于YOLOv8/v7/v6/v5的危险物品检测技术。主要采用YOLOv8技术并整合了YOLOv7、YOLOv6、YOLOv5的算法&#xff0c;进行了细致的性能指标对比分析。博客详细介绍了国内外在危险物品检测方面的研究现状、数据集处理方法、算法原理、模型构建与训练代码…

3D打印模型检查清单

创建 3D 打印模型一开始可能会有些令人生畏。 在这篇博文中&#xff0c;我们将介绍设计师应牢记的一些基本技巧&#xff0c;以获得令人惊叹的 3D 打印效果。 遵守此清单将确保你的 3D 模型为 3D 打印做好充分准备。 1、水密/非流形 可打印模型的表面不得有任何孔。 问自己一个…

漂亮哇塞的可视化大屏页面该如何设计?

要提升可视化界面的设计美观度&#xff0c;可以从以下几个方面入手&#xff1a; 使用高质量的图片和素材&#xff1a;使用高质量的图片和素材可以让界面更加美观。可以选择高清晰度的图片和素材&#xff0c;使得整个界面的质感更加高端。突出重点&#xff1a;在界面设计中&…

Vue3:Pinia简介及环境搭建

一、简介 Pinia是Vue3中的状态管理工具&#xff0c;类似与Vue2中的Vuex框架的作用 二、环境搭建 1、安装 npm install pinia2、配置 main.ts import {createApp} from vue import App from ./App.vue // 第一步&#xff1a;引入pinia import {createPinia} from piniacons…

与谷歌“分家”两年后,SandboxAQ推出统一加密管理平台

3月27日&#xff0c;SandboxAQ宣布其AQtive Guard平台现已全面可用&#xff08;GA&#xff09;&#xff0c;适用于所有行业&#xff0c;以防范人工智能驱动和量子攻击的威胁。前者是在两年前3月从谷歌母公司Alphabet分拆出来的初创公司&#xff0c;并在当时获得了“九位数”的融…

Mybatis——一对多关联映射

一对多关联映射 一对多关联映射有两种方式&#xff0c;都用到了collection元素 以购物网站中用户和订单之间的一对多关系为例 collection集合的嵌套结果映射 创建两个实体类和映射接口 package org.example.demo;import lombok.Data;import java.util.List;Data public cla…

Canvas实现简易数字电子时钟(带自定义样式)

前置内容 Canvas实现简易数字电子时钟 Canvas实现数字电子时钟&#xff08;带粒子掉落效果&#xff09; 效果 逻辑代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><title>粒子时钟-完整版</title&g…