[C#]使用OpencvSharp去除面积较小的连通域

【C++介绍】

关于opencv实现有比较好的算法,可以参考这个博客OpenCV去除面积较小的连通域_c#opencv 筛选小面积区域-CSDN博客

但是没有对应opencvsharp实现同类算法,为了照顾懂C#编程同学们,因此将 去除面积较小的连通域算法转成C#代码。

方法一流程:

//=======函数实现=====================================================================
void RemoveSmallRegion(Mat &Src, Mat &Dst, int AreaLimit, int CheckMode, int NeihborMode)
{
	int RemoveCount = 0;
	//新建一幅标签图像初始化为0像素点,为了记录每个像素点检验状态的标签,0代表未检查,1代表正在检查,2代表检查不合格(需要反转颜色),3代表检查合格或不需检查   
	//初始化的图像全部为0,未检查  
	Mat PointLabel = Mat::zeros(Src.size(), CV_8UC1);
	if (CheckMode == 1)//去除小连通区域的白色点  
	{
		//cout << "去除小连通域.";
		for (int i = 0; i < Src.rows; i++)
		{
			for (int j = 0; j < Src.cols; j++)
			{
				if (Src.at<uchar>(i, j) < 10)
				{
					PointLabel.at<uchar>(i, j) = 3;//将背景黑色点标记为合格,像素为3  
				}
			}
		}
	}
	else//去除孔洞,黑色点像素  
	{
		//cout << "去除孔洞";
		for (int i = 0; i < Src.rows; i++)
		{
			for (int j = 0; j < Src.cols; j++)
			{
				if (Src.at<uchar>(i, j) > 10)
				{
					PointLabel.at<uchar>(i, j) = 3;//如果原图是白色区域,标记为合格,像素为3  
				}
			}
		}
	}


	vector<Point2i>NeihborPos;//将邻域压进容器  
	NeihborPos.push_back(Point2i(-1, 0));
	NeihborPos.push_back(Point2i(1, 0));
	NeihborPos.push_back(Point2i(0, -1));
	NeihborPos.push_back(Point2i(0, 1));
	if (NeihborMode == 1)
	{
		//cout << "Neighbor mode: 8邻域." << endl;
		NeihborPos.push_back(Point2i(-1, -1));
		NeihborPos.push_back(Point2i(-1, 1));
		NeihborPos.push_back(Point2i(1, -1));
		NeihborPos.push_back(Point2i(1, 1));
	}
	else int a = 0;//cout << "Neighbor mode: 4邻域." << endl;
	int NeihborCount = 4 + 4 * NeihborMode;
	int CurrX = 0, CurrY = 0;
	//开始检测  
	for (int i = 0; i < Src.rows; i++)
	{
		for (int j = 0; j < Src.cols; j++)
		{
			if (PointLabel.at<uchar>(i, j) == 0)//标签图像像素点为0,表示还未检查的不合格点  
			{   //开始检查  
				vector<Point2i>GrowBuffer;//记录检查像素点的个数  
				GrowBuffer.push_back(Point2i(j, i));
				PointLabel.at<uchar>(i, j) = 1;//标记为正在检查  
				int CheckResult = 0;

				for (int z = 0; z < GrowBuffer.size(); z++)
				{
					for (int q = 0; q < NeihborCount; q++)
					{
						CurrX = GrowBuffer.at(z).x + NeihborPos.at(q).x;
						CurrY = GrowBuffer.at(z).y + NeihborPos.at(q).y;
						if (CurrX >= 0 && CurrX<Src.cols&&CurrY >= 0 && CurrY<Src.rows)  //防止越界    
						{
							if (PointLabel.at<uchar>(CurrY, CurrX) == 0)
							{
								GrowBuffer.push_back(Point2i(CurrX, CurrY));  //邻域点加入buffer    
								PointLabel.at<uchar>(CurrY, CurrX) = 1;           //更新邻域点的检查标签,避免重复检查    
							}
						}
					}
				}
				if (GrowBuffer.size()>AreaLimit) //判断结果(是否超出限定的大小),1为未超出,2为超出    
					CheckResult = 2;
				else
				{
					CheckResult = 1;
					RemoveCount++;//记录有多少区域被去除  
				}

				for (int z = 0; z < GrowBuffer.size(); z++)
				{
					CurrX = GrowBuffer.at(z).x;
					CurrY = GrowBuffer.at(z).y;
					PointLabel.at<uchar>(CurrY, CurrX) += CheckResult;//标记不合格的像素点,像素值为2  
				}
				//********结束该点处的检查**********    
			}
		}
	}
	CheckMode = 255 * (1 - CheckMode);
	//开始反转面积过小的区域    
	for (int i = 0; i < Src.rows; ++i)
	{
		for (int j = 0; j < Src.cols; ++j)
		{
			if (PointLabel.at<uchar>(i, j) == 2)
			{
				Dst.at<uchar>(i, j) = CheckMode;
			}
			else if (PointLabel.at<uchar>(i, j) == 3)
			{
				Dst.at<uchar>(i, j) = Src.at<uchar>(i, j);

			}
		}
	}
	//cout << RemoveCount << " objects removed." << endl;
}
//=======函数实现=====================================================================

//=======调用函数=====================================================================
	Mat img;
	img = imread("D:\\1_1.jpg", 0);//读取图片
	threshold(img, img, 128, 255, CV_THRESH_BINARY_INV);
	imshow("去除前", img);
	Mat img1;
	RemoveSmallRegion(img, img, 200, 0, 1);
	imshow("去除后", img);
	waitKey(0);
//=======调用函数=====================================================================

此段代码包含一个名为RemoveSmallRegion的函数,其功能是从给定的二值图像中移除符合条件的小连通区域。函数接受五个参数:

  1. Mat &Src: 输入的原始二值图像(单通道,通常为黑白图像)。
  2. Mat &Dst: 输出的目标图像,存储经过处理后的结果。
  3. int AreaLimit: 面积阈值,低于该阈值的连通区域会被移除。
  4. int CheckMode: 检查模式,决定要移除的是图像中的小连通白区还是小连通黑区。
    • CheckMode == 1: 移除小连通白区(白色像素点构成的区域)。
    • CheckMode == 0: 移除小连通黑区(黑色像素点构成的区域)。
  5. int NeihborMode: 邻域模式,决定采用4邻域还是8邻域算法进行连通区域扩展。
    • NeihborMode == 1: 使用8邻域算法(包括上下左右和四个对角方向相邻的像素)。
    • NeihborMode == 0: 使用4邻域算法(仅考虑上下左右相邻的像素)。

函数的具体实现步骤如下:

  1. 初始化RemoveCount变量记录移除的连通区域数量,创建与输入图像相同大小的PointLabel矩阵作为标签图像,用于记录每个像素点的检验状态(0:未检查;1:正在检查;2:检查不合格;3:检查合格或无需检查)。

  2. 根据CheckMode确定移除目标,分别针对小连通白区和小连通黑区对PointLabel进行初始化。对于不需要移除的像素点(即背景或前景),将其标签设为3,表示已检查且合格。

  3. 定义NeihborPos容器存储邻域位置,并根据NeihborMode选择使用4邻域或8邻域。

  4. 使用两层嵌套循环遍历输入图像的所有像素点。对于未检查的像素点(标签为0),执行以下操作:

    • 初始化GrowBuffer容器,用于记录当前连通区域内的像素点。
    • 将当前像素点标记为正在检查(标签设为1),并启动基于邻域扩展的生长过程。
    • 使用广度优先搜索(BFS)策略,依次访问GrowBuffer中的像素点及其邻域像素,将未检查的邻域像素加入GrowBuffer并标记为正在检查。
    • 当遍历完所有邻域像素后,根据GrowBuffer的大小与AreaLimit比较,判断该连通区域是否应被移除。
    • 根据判断结果更新GrowBuffer内所有像素点在PointLabel上的标签为2(检查不合格)或保持为1(检查合格)。
  5. 得到最终的PointLabel后,根据CheckMode255取反(即255 * (1 - CheckMode)),用于后续翻转图像像素值。遍历SrcPointLabel,将标签为2的像素点在Dst中翻转颜色(即将白变黑或黑变白),标签为3的像素点保持原色不变。

最后,代码提供了对RemoveSmallRegion函数的调用示例:

  • 读取图像"D:\1_1.jpg",并对其进行二值化处理(阈值为128,反相)。
  • 显示二值化处理后的原始图像。
  • 调用RemoveSmallRegion函数,移除面积小于200的黑区(CheckMode = 0),使用8邻域算法(NeihborMode = 1)。
  • 显示经过处理后的图像。
  • 等待用户按键后关闭窗口。

方法二流程:

//测试
void CCutImageVS2013Dlg::OnBnClickedTestButton1()
{
	vector<vector<Point> > contours;       //轮廓数组
	vector<Point2d>  centers;              //轮廓质心坐标 
	vector<vector<Point> >::iterator itr;  //轮廓迭代器
	vector<Point2d>::iterator  itrc;       //质心坐标迭代器
	vector<vector<Point> > con;            //当前轮廓


	double area;
	double minarea = 1000;
	double maxarea = 0;
	Moments mom;                          // 轮廓矩
	Mat image, gray, edge, dst;

	image = imread("D:\\66.png");
	cvtColor(image, gray, COLOR_BGR2GRAY);
	Mat rgbImg(gray.size(), CV_8UC3);    //创建三通道图
	blur(gray, edge, Size(3, 3));                         //模糊去噪
	threshold(edge, edge, 200, 255, THRESH_BINARY_INV);   //二值化处理,黑底白字

	//--------去除较小轮廓,并寻找最大轮廓--------------------------
	findContours(edge, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE); //寻找轮廓
	itr = contours.begin();             //使用迭代器去除噪声轮廓
	while (itr != contours.end())
	{
		area = contourArea(*itr);       //获得轮廓面积
		if (area<minarea)               //删除较小面积的轮廓 
		{
			itr = contours.erase(itr);  //itr一旦erase,需要重新赋值
		}
		else
		{
			itr++;
		}
		if (area>maxarea)              //寻找最大轮廓
		{
			maxarea = area;
		}
	}

	dst = Mat::zeros(image.rows, image.cols, CV_8UC3);
	/*绘制连通区域轮廓,计算质心坐标*/
	Point2d center;
	itr = contours.begin();
	while (itr != contours.end())
	{
		area = contourArea(*itr);		
		con.push_back(*itr);            //获取当前轮廓
		if (area == maxarea)
		{
			vector<Rect> boundRect(1);  //定义外接矩形集合
			boundRect[0] = boundingRect(Mat(*itr));
			cvtColor(gray, rgbImg, COLOR_GRAY2BGR);
			Rect select;
			select.x = boundRect[0].x;
			select.y = boundRect[0].y;
			select.width = boundRect[0].width;
			select.height = boundRect[0].height;
			rectangle(rgbImg, select, Scalar(0, 255, 0), 3, 2);  //用矩形画矩形窗

			
			drawContours(dst, con, -1, Scalar(0, 0, 255), 2);    //最大面积红色绘制
		}
		else
			drawContours(dst, con, -1, Scalar(255, 0, 0), 2);    //其它面积蓝色绘制

		con.pop_back();

		//计算质心
		mom = moments(*itr);
		center.x = (int)(mom.m10 / mom.m00);
		center.y = (int)(mom.m01 / mom.m00);
		centers.push_back(center);

		itr++;
	}

	imshow("rgbImg", rgbImg);
	//imshow("gray", gray);
	//imshow("edge", edge);
	imshow("origin", image);
	imshow("connected_region", dst);
	waitKey(0);
	return;

}

提供的代码为一个使用OpenCV库对输入图像"D:\66.png"进行处理的C++实现,执行以下任务:

  1. 图像预处理:

    • 读取图像并将其从BGR色彩空间转换为灰度图像(cvtColor)。
    • 应用高斯模糊,使用大小为3x3的核来减少噪声(blur)。
    • 对模糊后的图像执行二值阈值处理,阈值设为200,将高于该值的像素设置为白色,其余为黑色(threshold)。
  2. 轮廓检测与筛选:

    • 使用findContours函数在二值化图像上查找外部轮廓,存储在contours容器中。
    • 遍历所有轮廓,通过contourArea函数计算每个轮廓的面积。
      • 删除面积小于最小阈值minarea(初始设定为1000)的噪声轮廓,使用迭代器itr进行动态删除。
      • 同时记录下当前遍历到的最大轮廓面积maxarea
    • 最后保留下来的轮廓为满足面积条件的有效轮廓。
  3. 绘制轮廓与计算质心:

    • 创建一个新的Mat对象dst,用于绘制处理结果。
    • 初始化一个空的centers向量,用于存储各个轮廓的质心坐标。
    • 再次遍历有效轮廓:
      • 将当前轮廓添加到临时向量con中。
      • 计算当前轮廓面积。
      • 如果面积等于最大面积maxarea,则执行以下操作:
        • 计算当前轮廓的外接矩形,并用绿色边框在RGB图像rgbImg上绘制。
        • 在最终输出图像dst上以红色绘制当前轮廓。
      • 否则,在dst上以蓝色绘制当前轮廓。
      • 使用moments函数计算当前轮廓的矩,进而得到质心坐标,并将其添加到centers向量。
      • 清除临时向量con中的当前轮廓。
    • 显示各阶段处理结果:
      • RGB图像rgbImg(仅包含最大轮廓的绿色外接矩形)。
      • 原始灰度图像gray(注释掉未显示)。
      • 二值边缘图像edge(注释掉未显示)。

【C#版本效果展示】

方法一使用opencvsharp效果:

方法二opencvsharp效果:

可见已经用opencvsharp复刻C++版本算法。

【测试环境】

vs2019

netframework4.7.2

opencvsharp4.8.0

【源码下载地址】

https://download.csdn.net/download/FL1623863129/89074335

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/512046.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java获取IP地址以及MAC地址(附Demo)

目录 前言1. IP及MAC2. 特定适配器 前言 需要获取客户端的IP地址以及MAC地址 import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader;public class test {public static void main(String[] args) {try {// 执行命令Process process…

Nginx在Kubernetes集群中的进阶应用

简介 在现代DevOps环境中&#xff0c;Nginx作为负载均衡器与Kubernetes的Ingress资源的结合&#xff0c;为应用程序提供了强大的路由和安全解决方案。本文将深入探讨如何利用Nginx的灵活性和功能&#xff0c;实现高效、安全的外部访问控制&#xff0c;以及如何配置Ingress以优…

智能小车测速(3.26)

模块介绍&#xff1a; 接线&#xff1a; VCC -- 3.3V 不能接5V&#xff0c;否则遮挡一次会触发3次中断 OUT -- PB14 测速原理&#xff1a; cubeMX设置&#xff1a; PB14设置为gpio中断 打开定时器2&#xff0c;时钟来源设置为内部时钟&#xff0c;设置溢出时间1s&#xff0c…

上位机图像处理和嵌入式模块部署(qmacvisual图像清晰度)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 做过isp的同学都知道&#xff0c;图像处理里面有一个3a&#xff0c;即自动曝光、自动白平衡和自动对焦。其中自动对焦这个&#xff0c;就需要用输入…

qt通过setProperty设置样式表笔记

在一个pushbutton里面嵌套两个label即可&#xff0c;左侧放置图片label&#xff0c;右侧放置文字label&#xff0c;就如上图所示&#xff1b; 但是这时的hover&#xff0c;press的伪状态是没有办法“传递”给里面的控件的&#xff0c;对btn的伪状态样式表的设置&#xff0c;是不…

IP SSL的应用与安装

IP SSL&#xff0c;即互联网协议安全套接字层&#xff0c;它是一种为网络通信提供安全及数据完整性的安全协议。在网络传输过程中&#xff0c;IP SSL可以对数据进行加密&#xff0c;这样即便数据在传输途中被截取&#xff0c;没有相应的解密密钥也无法解读内容。这一过程如同将…

防抖节流面试

1、防抖 1.1、条件 1、高频 2、耗时&#xff08;比如console不算&#xff09; 3、以最后一次调用为准 刷到个神评论&#xff0c;回城是防抖&#xff0c;技能cd是节流 1.2、手写 传参版本 function debounce(fn,delay){let timerreturn function(...args){//返回函数必须是普…

动态规划详解(Dynamic Programming)

目录 引入什么是动态规划&#xff1f;动态规划的特点解题办法解题套路框架举例说明斐波那契数列题目描述解题思路方式一&#xff1a;暴力求解思考 方式二&#xff1a;带备忘录的递归解法方式三&#xff1a;动态规划 推荐练手题目 引入 动态规划问题&#xff08;Dynamic Progra…

QT子窗口关闭时自动释放及注意事项

先说方法&#xff0c;很简单&#xff0c;有如下API函数可用&#xff1a; testDialog->setAttribute( Qt::WA_DeleteOnClose, true )&#xff1b; 他的官方解释如下&#xff1a; 最后&#xff0c;说一个注意事项&#xff1a; 最近写python程序比较多&#xff0c;回过头来&a…

OPPO VPC 实践探索

01 概述 一年前(20年6月)&#xff0c;OPPO云网络技术底座开始支持VPC方案&#xff0c;解决了用户担心的云上安全和虚拟实例的性能问题。我们称这个版本为VPC1.0&#xff0c;其采用了先进的智能网卡加速和VXLAN隧道隔离技术&#xff0c;实现了VPC从无到有的突破。 然而由于业务快…

爬虫部署平台crawlab使用说明

Crawlab 是一个基于 Go 语言的分布式网络爬虫管理平台&#xff0c;它支持 Python、Node.js、Jar、EXE 等多种类型的爬虫。 Crawlab 提供了一个可视化的界面&#xff0c;并且可以通过简单的配置来管理和监控爬虫程序。 以下是 Crawlab 的一些主要优点&#xff1a; 集中管理&am…

绿联 安装Mysql数据库

绿联 安装Mysql数据库 1、镜像 mysql:5.7 数据库5.7.x系列。 mysql:8 数据库8.x.x系列&#xff0c;安装方式相同。 2、安装 2.1、拉取镜像 拉取5.7.x版本的镜像。 2.2、基础设置 重启策略&#xff1a;第三或第四项均可。 2.3、网络 桥接即可。 2.4、命令 在原有的“mys…

概率论基础——拉格朗日乘数法

概率论基础——拉格朗日乘数法 概率论是机器学习和优化领域的重要基础之一&#xff0c;而拉格朗日乘数法与KKT条件是解决优化问题中约束条件的重要工具。本文将简单介绍拉格朗日乘数法的基本概念、应用以及如何用Python实现算法。 1. 基本概念 拉格朗日乘数法是一种用来求解…

EPSON机器人仿真实战攻略:从设置通信到运行调试一网打尽!

EPSON机器人 仿真测试深度教程 机器人还没到,怎么提前验证写好得机器人程序? 强大的仿真功能来了!本文详细深入的介绍了仿真的功能,一步步教会你如何仿真! 请先关注公众号收藏,防止走丢! 需要先设置电脑与控制器通信的虚拟连接,设置-电脑与控制器通信-增加-选择连接…

第27篇:T触发器实现4位计数器

Q&#xff1a;本篇我们用T触发器实现时序逻辑电路--计数器。 A&#xff1a;T触发器&#xff08;Toggle Flip-Flop&#xff09;只有一个信号输入端&#xff0c;在时钟有效边沿到来时&#xff0c;输入有效信号则触发器翻转&#xff0c;否则触发器保持不变&#xff0c;因此T触发器…

C++之结构体初始化10种写法总结(二百六十六)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

大数据毕业设计hadoop+spark旅游推荐系统 旅游可视化系统 地方旅游网站 旅游爬虫 旅游管理系统 计算机毕业设计 机器学习 深度学习 知识图谱

基于hive数据仓库的贵州旅游景点数据分析系统的设计与实现 摘 要 随着旅游业的快速发展和数字化转型&#xff0c;旅游数据的收集和分析变得越来越重要。贵州省作为一个拥有丰富旅游资源的地区&#xff0c;旅游数据的分析对于促进旅游业的发展和提升旅游体验具有重要意义。基…

Redis分布式锁的优化

分布式锁 分布式锁&#xff1a;满足分布式系统或集群模式下多进程可见并且互斥的锁。 分布式锁的实现 分布式锁的核心是实现多进程之间互斥&#xff0c;而满足这一点的方式有很多&#xff0c;常见的有三种&#xff1a; MySQLRedisZookeeper互斥利用mysql本身的互斥锁机制利…

LangChain-03 astream_events 流输出

内容简介 尝试用 FAISS 或 DocArrayInMemorySearch 将数据向量化后检索astream_events 的效果为 |H|arrison| worked| at| Kens|ho|.|| 安装依赖 # 之前的依赖即可 pip install --upgrade --quiet langchain-core langchain-community langchain-openai # Win或Linux用户可…

摸鱼toyaml.com更新

摸鱼https://toyaml.com/windowsupdate.html