Ansys Zemax | 如何将光栅数据从Lumerical导入至OpticStudio(上)

图片

附件下载

联系工作人员获取附件

本文介绍了一种使用Ansys Zemax OpticStudio和Lumerical RCWA在整个光学系统中精确仿真1D/2D光栅的静态工作流程。将首先简要介绍方法。然后解释有关如何建立系统的详细信息。

本篇内容将分为上下两部分,上部将首先简要介绍方法工作流,下部将详细阐述示例部分。

介绍

在此工作流程中,设计人员首先在Lumerical FDTD或RCWA中模拟光栅,然后将数据导出到扩展名为json的文件。在OpticStudio中,用户可以导入这些数据,以精确模拟在整个宏观系统中的光栅特性。

许可证要求

此静态链接工作流需要从Lumerical生成数据并导入到OpticStudio中。这两个软件单独工作,不需要在同一台电脑上。要从Lumerical生成所需的数据,用户需要Lumerical FDTD许可证。要将数据读入OpticStudio,用户需要Ansys Zemax OpticStudio的专业版、旗舰版或企业版许可证。请注意,此功能不支持旧版的OpticStudio。

静态与动态工作流

值得一提的是,有两个现有的工作流程可以在Lumerical和OpticStudio之间交换数据。一个是我们将在本文中介绍的静态工作流。另一个是以不同方式工作的动态工作流。这两种工作流程具有不同的灵活性,不存在一个优于另一个。用户应根据其设计案例考虑使用哪一种。

图片

从Lumerical生成光栅数据

在此工作流程中,我们使用扩展文件名为json的文件将光栅仿真结果从Lumerical传递到OpticStudio。json文件可以由组件供应商提供,也可以由使用OpticStudio的同一用户生成。

本文将不介绍在Lumerical中模拟和导出json文件的操作,需要了解请联系工作人员或者查阅帮助手册。(推荐阅读技术文章:Lumerical 亚波长模型:介绍和数据生成)

在Ansys Zemax OpticStudio中建立光栅

在OpticStudio中,要建立光栅,建议使用以下3个物体之一:Diffraction Grating、User Defined Object (DiffractionGrating.DLL)和User Defined Object (Polygon_grating.DLL)。默认安装文件夹中不提供 Polygon_grating.DLL文件,但可以通过联系我们的工作人员获取

请注意,光栅建在这些建议物体的表面1处。

图片

添加上述3个物体之一后,我们使用物体属性...衍射选项卡来定义DLL插件 “lumerical-sub-wavelength-XXXXXX.dll”,其中 XXXXXX 是版本,例如“2023R1”。此DLL将光栅数据(.json)读入 OpticStudio。请注意,光栅数据(.json)应保存在\Document\Zemax\DLL\Diffractive\文件夹中。

下一节将介绍此DLL的参数。

图片

Ansys Zemax OpticStudio中的参数

随机模式

如果将其设置为非零,则光线在击中表面时不会分裂。相反,光线将被随机衍射到一个级次,如下所示。这对于一条光线多次照射衍射表面并分成太多段的情况非常有用。

测试模式

通常不使用此参数。用户应将其保持为零,除非需要下面描述的一些特殊用途。

  • 当测试模式为0时,DLL在正常模式下工作。

  • 当我们需要一些功能时,在此值之上增加一个值。

    - +1表示DLL将导出日志文件到\Document\Zemax\DLL\Diffractive\lumerical-sub-wavelength.log

    - +8表示DLL将在CMOS模式下工作。在此模式下,DLL认为除T(0,0)之外的所有透射级次的衍射功率为0。T(0,0)的衍射功率由1-R计算,其中R是所有反射级次的衍射功率之和。这是专门为CMOS衍射设计的模式。对于CMOS传感器,光永远不会“透射”,而是被硅层吸收,进一步转换为电能。我们需要重新计算“非反射”功率来近似吸收功率并将它们归于T(0,0)阶。有关仿真CMOS的更多详细信息将在另一篇文章中讨论。

例如,如果我们将测试模式参数设置为1+8=9,则意味着需要它在CMOS模式下工作并导出日志文件。

提示和注意事项

随机模式和起始/终止X/Y级次

开启随机模式后,建议用户设置X Start = X Stop = Y Start = Y Stop = 0。这与 Diffraction DLL插件在OpticStudio中的工作方式有关。OpticStudio始终调用从(X Start,Y Start)到(X Stop,Y Stop)所有级次的DLL。但是,当随机模式打开时,DLL仅使用 (X Start,Y Start),对其他级次的所有调用都是多余的,并且会大大降低仿真速度。

另一方面,如果用户想使用X/Y起始/终止级次,随机模式需要为0,这意味着随机模式已关闭。

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/511937.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

01 Python进阶:正则表达式

re.match函数 使用 Python 中的 re 模块时,可以通过 re.match() 函数来尝试从字符串的开头匹配一个模式。以下是一个简单的详解和举例: import re# 定义一个正则表达式模式 pattern r^[a-z] # 匹配开头的小写字母序列# 要匹配的字符串 text "h…

程序的编译、链接过程分析(简洁浓缩版)!

《嵌入式工程师自我修养/C语言》系列——程序的编译、链接过程分析(简洁浓缩版)! 一、程序的编译1.1 预编译指令 pragma1.2 编译过程概述1.3 符号表和重定位表 二、程序的链接2.1 分段组装2.2 符号决议2.2.1 强符号与弱符号2.2.2 GNU编译器的…

了解与生成火焰图

目录 一、如何看懂火焰图 1、基本特征 2、基本分类 二、如何生成火焰图 1、捕获调用栈 2、折叠栈 3、转换为 svg 格式 4、展示 svg 一、如何看懂火焰图 1、基本特征 (1)纵轴:即每一列代表一个调用栈,每一个格子代表一个函…

智能仓储变革在即,从业者该何去何从?

导语 大家好,我是智能仓储物流技术研习社的社长,你的老朋友,老K。行业群 新书《智能物流系统构成与技术实践》 随着2024年的到来,物流和仓储行业正处于一个技术革命的关键时刻。人工智能(AI)的融入不仅预示…

【二叉树】Leetcode 437. 路径总和 III【中等】

路径总和 III 给定一个二叉树的根节点 root ,和一个整数 targetSum ,求该二叉树里节点值之和等于 targetSum 的 路径 的数目。 路径 不需要从根节点开始,也不需要在叶子节点结束,但是路径方向必须是向下的(只能从父节…

Zabbix6 - Centos7部署Grafana可视化图形监控系统配置手册手册

Zabbix6 - Centos7部署Grafana可视化图形监控系统配置手册手册 概述: Grafana是一个开源的数据可视化和监控平台。其特点: 1)丰富的可视化显示插件,包括热图、折线图、饼图,表格等; 2)支持多数据…

[源码] Android 上的一些快捷方式,如通知、快捷方式等

目录 一、通知0. 配置权限1. 测试发送通知代码2. 打开通知设置界面代码3. 前台服务创建常驻通知 二、快捷方式1. 测试添加动态快捷方式代码 三、开发者图块四、桌面小部件 基于jetpack compose 框架的使用代码 一、通知 参见 官方文档 0. 配置权限 <uses-permission andr…

REST API的指纹验证机制

前端或者客户端涉及数据相关的请求都是不安全的&#xff0c;从某种意义上只能通过一些手段降低请求不被容易使用。本来来介绍一种基于 JWT 的指纹机制。 关于 JWT 令牌机制就不详细介绍了。在 JWT 令牌中包含系统 JWT 指纹可以带来安全改进&#xff0c;而不会给用户带来任何不…

RocketMQ 消费者源码解读:消费过程、负载原理、顺序消费原理

B站学习地址 上一遍学习了三种常见队列的消费原理&#xff0c;本次我们来从源码的角度来证明上篇中的理论。 1、准备 RocketMQ 版本 <!-- RocketMQ --> <dependency><groupId>org.apache.rocketmq</groupId><artifactId>rocketmq-spring-boot-s…

yolov5关键点检测-实现溺水检测与警报提示(代码+原理)

基于YOLOv5的关键点检测应用于溺水检测与警报提示是一种结合深度学习与计算机视觉技术的安全监控解决方案。该项目通常会利用YOLOv5强大的实时目标检测能力&#xff0c;并通过扩展或修改网络结构以支持人体关键点检测&#xff0c;来识别游泳池或其他水域中人们的行为姿态。 项…

常关型p-GaN栅AlGaN/GaN HEMT作为片上电容器的建模与分析

来源&#xff1a;Modeling and Analysis of Normally-OFF p-GaN Gate AlGaN/GaN HEMT as an ON-Chip Capacitor&#xff08;TED 20年&#xff09; 摘要 提出了一种精确基于物理的解析模型&#xff0c;用于描述p-GaN栅AlGaN/GaN高电子迁移率晶体管&#xff08;HEMT&#xff09…

【Linux】Vim编辑器

专栏文章索引&#xff1a;Linux 目录 在Vim编辑器中&#xff0c;一个Tab键相当于几个空格&#xff1f; 在Vim编辑器中&#xff0c;一个Tab键相当于几个空格&#xff1f; 在Vim编辑器中&#xff0c;默认情况下&#xff0c;一个Tab键相当于8个空格。 这是Vim的默认设置&#x…

【C++】哈希之位图

目录 一、位图概念二、海量数据面试题 一、位图概念 假如有40亿个无重复且没有排序的无符号整数&#xff0c;给一个无符号整数&#xff0c;如何判断这个整数是否在这40亿个数中&#xff1f; 我们用以前的思路有这些&#xff1a; 把这40亿个数遍历一遍&#xff0c;直到找到为…

鸿蒙OS元服务开发:【(Stage模型)设置悬浮窗】

一、设置悬浮窗说明 悬浮窗可以在已有的任务基础上&#xff0c;创建一个始终在前台显示的窗口。即使创建悬浮窗的任务退至后台&#xff0c;悬浮窗仍然可以在前台显示。通常悬浮窗位于所有应用窗口之上&#xff1b;开发者可以创建悬浮窗&#xff0c;并对悬浮窗进行属性设置等操…

frp内网穿透之(反向代理nginx)

通过公网 https 连接访问内网&#xff08;局域网&#xff09;本地http服务如下&#xff1a; 1.准备工作 ​ 想要实现内网穿透功能首先我们需要准备&#xff1a; 一台公网服务器&#xff08;用作frps的服务端&#xff09;一台需要做转发的内网服务器&#xff08;用作frpc的客…

D-迷恋网游(遇到过的题,做个笔记)

我的代码&#xff1a; #include <iostream> using namespace std; int main() {int a, b, c; //a表示内向&#xff0c;b表示外向&#xff0c;c表示无所谓cin >> a >> b >> c; //读入数 if (b % 3 0 || 3-b % 3 < c) //如果外向的人能够3人组成…

Golang Channel底层实现原理

1、本文讨论Channel的底层实现原理 首先&#xff0c;我们看Channel的结构体 简要介绍管道结构体中&#xff0c;几个关键字段 在Golang中&#xff0c;管道是分为有缓冲区的管道和无缓冲区的管道。 这里简单提一下&#xff0c;缓冲区大小为1的管道和无缓冲区的管道的区别&…

Android14之BpBinder构造函数Handle拆解(二百零四)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…

详解人工智能(概念、发展、机遇与挑战)

前言 人工智能&#xff08;Artificial Intelligence&#xff0c;简称AI&#xff09;是一门新兴的技术科学&#xff0c;是指通过模拟、延伸和扩展人类智能的理论、方法、技术和应用系统&#xff0c;以实现对人类认知、决策、规划、学习、交流、创造等智能行为的模拟、延伸和扩展…

Linux 线程互斥、互斥量、可重入与线程安全

目录 一、线程互斥 1、回顾相关概念 2、抢票场景分析代码 多个线程同时操作全局变量 产生原因 如何解决 二、互斥量 1、概念 2、初始化互斥量&#xff1a; 方法1&#xff1a;静态分配 方法2&#xff1a;动态分配 3、销毁互斥量&#xff1a; 4、加锁和解锁 示例抢…