史上最强 PyTorch 2.2 GPU 版最新安装教程

一 深度学习主机

1.1 配置

先附上电脑配置图,如下:

利用公司的办公电脑对配置进行升级改造完成。除了显卡和电源,其他硬件都是公司电脑原装。

1.2 显卡

有钱直接上 RTX4090,也不能复用公司的电脑,其他配置跟不上。
进行深度学习,除了看算力外,还需要看显存大小,最用在 RTX3060 12G显存和RTX 4060 16G显存 之间进行了选择。 最后买了RTX 4060 16G显存的显卡。
显卡大小:显卡有1风扇、2风扇和3风扇之分,风扇越多散热性能越好,但是我的电脑是itx 小机箱,最后买了个2风扇的显卡。

1.3 电源

原电源为310w, 更换成了650w的电源。 买显卡时,都会写建议电源功率。

1.4 风扇

担心散热问题,换了个好点的风扇。后来发现还不如不换,太能折腾了。

至此,深度学习入门主机硬件准备完毕。哈哈。

二 安装显卡驱动

官方客服给的启动安装方法:

您好,这个是N卡官网的驱动下载链接:https://www.nvidia.cn/Download/Find.aspx?lang=cn
您选择好您的显卡版本,选择对应的系统版本后点击搜索就可以了
主要玩游戏选择geforce game ready,主要用来做设计选择studio驱动。
如何选择对应的显卡版本:
★★★★★★★★★
这部分您要仔细看下的哦~
★★★★★★★★★
产品类型:
选择Geforce
产品系列:
例如4060 4070 4080 4090就选择Geforce RTX 40 series
3050 3060 3070 3080 3090就选择Geforce RTX 30 series 
2060 2070 2080 就选择Geforce RTX 20 series
1650 1660就选择 Geforce 16 series
1030 1050 1060 1070 1080就选择 Geforce 10 series
960 970 980就选择 Geforce 900 series
710 730就选择 Geforce 700 series
★★★★重点注意!(不要选择后缀带notebooks的那个是笔记本的驱动)★★★★
产品家族:
在这里选择您具体的显卡型号就可以了哈~
具体的显卡型号您可以通过您的商品订单,或者是显卡包装盒上看到的哈~
操作系统:
选择您当前电脑的系统即可
其他的选项默认即可
会出来很多驱动版本的选项,任意选择一个对应类型的下载安装就可以的 

深度学习选择studio驱动


可以同时安装两种驱动,自由切换。

不安装此显卡驱动,hdmi连接显卡后,我的显示屏显示有问题

三 安装python

Latest PyTorch requires Python 3.8 or later.

从 https://www.anaconda.com/download 下载对应的 Anaconda 版本安装即可。
打开 Anaconda 创建虚拟环境 torch2_gpu, 如下图所示:

打开终端验证:

四 安装 Visual Studio

安装 CUDA 之前需要先安装 Visual Studio, 否则会出现如下提示:

从 https://visualstudio.microsoft.com/zh-hans/free-developer-offers/ 下载 Visual Studio Community.
在安装选项,选择 使用C++的桌面开发 即可。

五 CUDA 安装

5.1 CUDA 简介

官网地址:https://developer.nvidia.com/cuda-toolkit
CUDA(Compute Unified Device Architecture)是由NVIDIA开发的并行计算平台和编程模型,用于利用NVIDIA GPU(Graphics Processing Unit)进行通用目的计算(GPGPU)。它是一种为GPU编程提供高性能和易用性的软件环境。
CUDA的主要目标是将GPU作为计算加速设备,用于执行并行计算任务,特别是科学计算和深度学习等领域。它通过提供一套编程接口(API)和工具集,使开发者能够利用GPU的大规模并行计算能力,以加速计算密集型任务。
使用CUDA,开发者可以使用编程语言如C/C++、Python等来编写GPU加速的程序。CUDA提供了一系列库和工具,如CUDA Runtime库、CUDA Tools(如nvcc编译器)和NVIDIA Nsight开发环境,用于编译、调试和优化CUDA程序。
CUDA的优势在于其紧密结合了NVIDIA GPU的体系结构特点,可对任务进行细粒度的并行处理,并利用GPU上的数百到数千个核心同时执行计算任务。这使得CUDA成为目前广泛应用于科学计算、数值模拟、深度学习等领域的GPU编程平台。
值得注意的是,对于使用CUDA进行开发的程序,其执行的硬件需求需要是支持CUDA的NVIDIA GPU,并且需要安装相应的CUDA驱动程序和运行时库。

5.2 查看 CUDA 版本

  1. 命令行查看 CUDA 版本

  1. NAVIDIA 控制面板中查看 CUDA 版本

打开 NVIDIA Control Panel

点击 管理 3D 设置 --> 系统信息

查看 CUDA 版本为:12.4

上述结果说明可以安装 CUDA 12.4 及以下的版本。
不要着急直接安装该版本的 CUDA,因为还有需要安装配套的pytorch。

5.3 确定 CUDA 和 PyTorch 版本

从 PyTorch 官网 https://pytorch.org 确定对应关系,如下图所示:

我们选择安装最新版 PyTorch 2.2.2 以及对应的计算平台 CUDA 12.1

5.4 CUDA 下载安装

  1. 进入 CUDA 官网,根据上面确定的 CUDA 版本,下载对应的版本。

  1. 点击下载的 exe 文件进行安装

  1. 选择安装目录

  1. 系统检查完毕,点击同意

  1. 选择 自定义安装,点击下一步

  1. 继续点击下一步

  1. 选择安装路径,一般默认即可。

  1. 等待安装完成

  1. 点击下一步

  1. 点击关闭,结束

  1. 查看环境变量,已经自动配置

5.5 验证 CUDA 是否安装成功

六 cuDNN 安装

6.1 cuDNN 简介

官网地址:https://developer.nvidia.com/cudnn

cuDNN(CUDA Deep Neural Network)是由NVIDIA开发的深度神经网络(DNN)加速库,专门用于在CUDA平台上进行深度学习任务的加速。
cuDNN提供了高度优化的DNN(深度神经网络)基础操作和算法实现,如卷积、池化、归一化、激活函数等,以及自动求导和张量操作等。它利用了NVIDIA GPU的并行计算能力和高度可编程的架构,提供了高性能的DNN计算和训练加速。
通过使用cuDNN,深度学习框架(如TensorFlow、PyTorch等)可以利用其提供的GPU加速功能,加快训练和推理的速度。cuDNN库实现了高效的卷积计算和其他操作,优化了计算过程和内存使用,以最大化GPU的利用率和性能。
cuDNN还提供了一些高级功能,如自动调整算法的性能和内存使用、混合精度计算等,以进一步提高深度学习任务的效率和性能。
一句话说明,cuDNN是NVIDIA为深度学习开发者提供的一个重要工具,它通过高度优化的DNN操作和算法实现,使得深度学习框架能够更有效地利用CUDA和NVIDIA GPU的性能,加速深度学习任务的执行。
它的主要特性如下:

  • 为各种常用卷积实现了 Tensor Core 加速,包括 2D 卷积、3D 卷积、分组卷积、深度可分离卷积以及包含 NHWC 和 NCHW 输入及输出的扩张卷积
  • 为诸多计算机视觉和语音模型优化了内核,包括 ResNet、ResNext、EfficientNet、EfficientDet、SSD、MaskRCNN、Unet、VNet、BERT、GPT-2、Tacotron2 和 WaveGlow
  • 支持 FP32、FP16、BF16 和 TF32 浮点格式以及 INT8 和 UINT8 整数格式
  • 4D 张量的任意维排序、跨步和子区域意味着可轻松集成到任意神经网络实现中
  • 能为各种 CNN 体系架构上的融合运算提速

注意:在数据中心和移动 GPU 中采用 Ampere、Turing、Volta、Pascal、Maxwell 和 Kepler GPU 体系架构的 Windows 和 Linux 系统均支持 cuDNN。

6.2 cuDNN 下载安装

  1. 进入 cuDNN 官网,选择对应的版本进行下载。


因此时没有win11的选项,故选择 Tarball 进行下载。

  1. 将下载的压缩包解压

  1. 将解压后 bin 目录的内容全部放到 CUDA 对应的 bin 目录下。

  1. 将解压后 include 目录的内容全部放到 CUDA 对应的 include 目录下

  1. 将解压后 lib 目录下 x86 目录内容全部放到 CUDA 对应的 lib 目录下 x86 目录下

  1. 配置环境变量,将 CUDA bin/include/lib下x86目录配置到环境变量中。


只需添加绿框中两个环境变量即可,因为前两个在用 exe 文件安装 cuda 时已经自动添加了。

6.3 验证 cuDNN 是否安装成功

返回 GPU 型号,则安装成功。

七 PyTorch 安装

7.1 安装

根据官网安装信息

使用如下命令进行安装:

conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia


如果使用 pip 进行安装,命令如下:

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

查看安装包,如下图所示:

7.2 验证 GPU 是否可用

torch.cuda.is_available() 为True则GPU可用,False表示不可用。

import torch
print(torch.__version__)
print(torch.version.cuda)
# 输出为True,则安装无误
print(torch.cuda.is_available())  

结果如下图所示:

八 参考链接

  • https://blog.csdn.net/m0_63007797/article/details/132269612
  • https://zhuanlan.zhihu.com/p/651151335

欢迎关注微信公众号:大数据AI

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/511757.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[Linux]基础IO(中)---理解重定向与系统调用dup2的使用、缓冲区的意义

重定向理解 在Linux下,当打开一个文件时,进程会遍历文件描述符表,找到当前没有被使用的 最小的一个下标,作为新的文件描述符。 代码验证: ①:先关闭下标为0的文件,在打开一个文件,…

鸿蒙原生应用开发-网络管理Socket连接(一)

一、简介 Socket连接主要是通过Socket进行数据传输,支持TCP/UDP/TLS协议。 二、基本概念 Socket:套接字,就是对网络中不同主机上的应用进程之间进行双向通信的端点的抽象。 TCP:传输控制协议(Transmission Control Protocol)。是一…

最优算法100例之24-打印1到最大的n位数

专栏主页:计算机专业基础知识总结(适用于期末复习考研刷题求职面试)系列文章https://blog.csdn.net/seeker1994/category_12585732.html 题目描述 输入数字 n,按顺序打印出从 1 到最大的 n 位十进制数。比如输入 3,则…

探索数据库-------MYSQL故障排除与优化

目录 mysql逻辑架构图 一、MySQL 数据库故障 1.1 MySQL 单实例故障排查 1.1.1故障现象 1 1.1.2故障现象 2 1.1.3故障现象 3 1.1.4故障现象 4 1.1.5故障现象 5 1.1.6故障现象 6 1.1.7故障现象 7 1.1.8故障现象 8 1.2MySQL 主从故障排查 1.2.1故障现象 1 1.2.2故障…

绝地求生:爷青回!老版艾伦格回归?雨天雾天的艾伦格你还记得吗?

爷青回!老版艾伦格回归?雨天雾天的艾伦格你还记得吗? 嗨,我是闲游盒~ 早在很久前,就有许多玩家吐槽艾伦格越改越没那味了,没之前的真实感了等等.... ◆ PUBG官方发布了一条推文,其中就有类似老版…

idea开发 java web 酒店推荐系统bootstrap框架开发协同过滤算法web结构java编程计算机网页

一、源码特点 java 酒店推荐推荐系统是一套完善的完整信息系统,结合java web开发和bootstrap UI框架完成本系统 采用协同过滤算法进行推荐 ,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式…

Centos7环境下安装MySQL8详细教程

1、下载mysql安装包 2、检查是否安装过mysql ps:因为以前用yum安装过,所以先用yum卸载。如果不是此方式或者没安装过则跳过 [rootlocalhost ~]# yum remove mysql 已加载插件:fastestmirror 参数 mysql 没有匹配 不删除任何软件包 查看是否有mysql依赖 …

基于Scala开发Spark ML的ALS推荐模型实战

推荐系统,广泛应用到电商,营销行业。本文通过Scala,开发Spark ML的ALS算法训练推荐模型,用于电影评分预测推荐。 算法简介 ALS算法是Spark ML中实现协同过滤的矩阵分解方法。 ALS,即交替最小二乘法(Alte…

golang语言系列:Web框架+路由 之 Echo

云原生学习路线导航页(持续更新中) 本文是golang语言系列文章,本篇主要对 Echo 框架 的基本使用方法 进行学习 1.Echo是什么 Go 有众多Web框架,Echo 是其中的一个,官网介绍Echo有高性能、可扩展性、极简的特点。使用E…

java发送请求-cookie有关代码

在初始化后添加cookie的代码 用这个httpclients类调custom方法,进行代码定制化 找和cookie有关的方法,设置默认的cookie存储信息 入参是接口 将入参粘贴后找方法,用new实现这个接口 这个方法是无参空构造,可以使用 设置了cookie …

【Redis】MISCONF Redis is configured to save RDB snapshots报错解决方案

【Redis】MISCONF Redis is configured to save RDB snapshots报错解决方案 大家好 我是寸铁👊 总结了一篇【Redis】MISCONF Redis is configured to save RDB snapshots报错解决方案✨ 喜欢的小伙伴可以点点关注 💝 前言 今天在登录redis时&#xff0c…

入门级深度学习主机组装过程

一 配置 先附上电脑配置图,如下: 利用公司的办公电脑对配置进行升级改造完成。除了显卡和电源,其他硬件都是公司电脑原装。 二 显卡 有钱直接上 RTX4090,也不能复用公司的电脑,其他配置跟不上。 进行深度学习&…

路由和远程访问是什么?

路由和远程访问在现代互联网时代中,扮演着至关重要的角色。它们为我们提供了便捷的信息传递途径,让不同地区的电脑、设备以及人们之间能够轻松进行通信和交流。 对于路由来说,它是连接互联网上的各个网络的核心设备。一台路由器可以将来自不同…

2013年认证杯SPSSPRO杯数学建模B题(第二阶段)流行音乐发展简史全过程文档及程序

2013年认证杯SPSSPRO杯数学建模 B题 流行音乐发展简史 原题再现: 随着互联网的发展,流行音乐的主要传播媒介从传统的电台和唱片逐渐过渡到网络下载和网络电台等。网络电台需要根据收听者的已知喜好,自动推荐并播放其它音乐。由于每个人喜好…

CCIE-03-Layer2-LAN-TS

目录 实验条件网络拓朴实验目标 开始排错问题1. SW2上的DHCP中继没有配置正确问题2. SW1/SW2的SVI接口被关闭问题3. 安全端口配置了不同的MAC地址 实验条件 网络拓朴 Output1 Output2 实验目标 排除故障使得PC101访问Server1时符合图片中给出的Output 开始排错 根据要求…

认识什么是Webpack

目录 1. 认识Webpack 1.1. 什么是Webpack?(定义) 1.2. 使用Webpack 1.2.1. 需求 1.2.2. 步骤 1.3. 入口和出口默认值 1.3.1. 需求代码如下 2. 修改Webpack打包入口和出口 2.1. 步骤: 2.2. 注意 3. Webpack自动生成html文件 3.1.…

NPW(监控片的)的要点精讲

半导体的生产过程已经历经数十年的发展,其中主要有两个大的发展趋势,第一,晶圆尺寸越做越大,到目前已有超过70%的产能是12寸晶圆,不过18寸晶圆产业链推进缓慢;第二,电子器件的关键尺寸越做越小&…

VLAN间路由

部署了VLAN的传统交换机不能实现不同VLAN间的二层报文转发,因此必须引入路由技术来实现不同VLAN间的通信。VLAN路由可以通过二层交换机配合路由器来实现,也可以通过三层交换机来实现; VLAN间通讯限制 每个VLAN都是一个独立的广播域&#xff…

ubuntu-server部署hive-part1-安装jdk

参照 https://blog.csdn.net/qq_41946216/article/details/134345137 操作系统版本:ubuntu-server-22.04.3 虚拟机:virtualbox7.0 安装jdk 上传解压 以root用户,将jdk上传至/opt目录下 tar zxvf jdk-8u271-linux-x64.tar.gz 配置环境变量…

LLM - 大语言模型 基于人类反馈的强化学习(RLHF)

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://blog.csdn.net/caroline_wendy/article/details/137269049 基于人类反馈的强化学习(RLHF,Reinforcement Learning from Human Feedback),结合 强化学习(RL) 和 人类反馈 来优化模型的性能。这种方法主要包…