SV学习笔记(一)

SV:SystemVerilog

  • 开启SV之路

数据类型

內建数据类型

  • 四状态与双状态 :

    • 四状态指0、1、X、Z,包括logic、integer、 reg、 wire。
    • 双状态指0、1,包括bit、byte、 shortint、int、longint。
  • 有符号与无符号 :

    • 有符号:byte、shortint、int、longint、integer。
    • 无符号:bit、logic、reg、wire。
  • 关于数据类型使用的几个注意点 :

    • SV中虽然支持reg和wire,但对于 验证平台要尽量使用logic ,并且建议采样RTL信号时变量要使用logic类型。

    • 实际工作中 使用最多的是logic和bit ,一般 需要计数和比较大小时会使用byte或int 。

    • 尽量 避免两种不同数据类型变量进行操作 ,包括 有无符号、四状态双状态、不同位宽 ,如必须进行操作,请先转换为同一类型。

  • 关于数据类型转换的几个注意点 :

    • 四状态转换为双状态时, x和z转换为0 。
    • 多位数据赋值给少位数据,则 高位被截取忽略 ;少位数据赋值给多位数据,双状态类型的 高位赋值为0四状态类型的 高位赋值为x 。(以上指的是无符号类型
    • 有符号变量转无符号变量,直接赋值的话会将 原始比特数据 赋给无符号变量,但其原符号位失去含义;使用转换语句转换的话,会将有符号变量 取模 赋值给无符号变量。
    • 总之,还是尽量避免数据类型间的转换,数据类型间的转换是容易出错的地方,需要格外注意。
  • 数据类型转换操作 :

//静态转换(不对转换值进行检查):
unsigned_data = unsigned'(signed_data);
int_data = int'(real_data);
real_data = real'(int_data);

//动态转换(仿真时对转换值进行检查,转换失败会报告):
//$cast(tgt, src);
$cast(unsigned_data, signed_data);

//静态和动态转换都属于显示转换,不借助操作符的转换称为隐式转换
logic data0;
bit data1;
data1 = data0;

定宽数组

  • 数组声明 :
//变量左侧为矢量宽度,右侧为维度,且从左至右代表维度从高到低

//二维数组(习惯上左右顺序是从低到高,这对初始化很重要)
int data_a[0:15];          // 16个整数[0]...[15]
int data_a[16];            // 紧凑型声明

//多维数组(左边为高维度)
int data_a[0:7] [0:3];
int data_a[8] [4];        // 紧凑的多维数组声明
int data_a[7][3] = 1;     // 为最后一个元素赋值
  • 数组的初始化和赋值 :
int data_a[4] = '{0,1,2,3};     //data_a[0]为0 ... data_a[3]为3
int data_a[0:3] = '{0,1,2,3};   //data_a[0]为0 ... data_a[3]为3
int data_a[4] = '{4{1}};        //全赋值为1
int data_a[4] = '{5,default:-1}; //data_a[0]为5,其他为-1
  • 存储空间 :
bit [3][7:0] b_pack;
bit [7:0] b_unpack [3];
logic [3][7:0] b_pack;
logic [7:0] b_unpack [3];

//变量左侧代表矢量宽度,右侧代表数组维度,也可以称为数组的合并与非合并,以上都可以代表24bit数据容量。
//二值逻辑bit声明,每bit位占用1bit空间,第一种声明占用1WORD空间,3x8bit,第二种声明占用3个WORD空间,3WORD x 1x8bit;
//四值逻辑logic声明,每bit位占用2bit空间,第一种声明占用2WORD空间,3x16bit,第二种声明占用3WORD空间,3WORD x 1x16bit。
//所以,在合适的时候选用合并数组,能够节省存储空间。(软件仿真时计算机空间占用都是以word为单位的)

  • 数组操作之for和foreach循环 :
bit [31:0] src[5];
bit [31:0] dst[5];

for(int i=0; i<$size(src); i++)
    src[i] = i;

foreach (dst[j])
    dst[j] = src[j] * 2;
//$size(src)是获取最高维度变量个数,也可以指定维度$size(src,1),其中1代表最高,2次之...
//foreach语句会遍历数组变量,这也是最推荐的使用方法,多维度遍历可以使用foreach(dst[i,j])。
  • 数组操作之复制和比较 :
bit [31:0] src[5] = '{0,1,2,3,4};
bit [31:0] dst[5] = '{4,3,2,1,0};
if(src == dst) $display("src == dst"); //比较数组

dst = src; //数组复制

src[0] = 5; //修改数组中某元素

//赋值可以直接使用赋值符号“=”;
//直接进行数组的复制;
//比较,也可以使用“==”或“!=”来比较,不过结果仅限于内容相同或不相同。

动态数组

  • 定宽数组类型宽度编译时已经确定,若在程序运行时确定数组宽度就要使用 动态数组 。
  • 动态数组特点就是仿真运行时灵活调节数组的大小,也就是存储量。
  • 动态数组开始时使用“[]”来声明,此时数组为空,其后使用“new[]”来分配空间,方括号中传递数组宽度。
  • 调用“new[]”时也可以将数组名一并传递,将已有数组的值复制到新的数组中。
int dyn[];
int d2[]; //声明动态数组

initial begin
    dyn = new[5]; //分配5个元素

    foreach(dyn[j]) dyn[j] = j; //对元素初始化

    d2 = dyn; //复制动态数组,d2初始元素个数为零,复制后元素个数为5,且dyn和d2各自独立
    d2[0] = 5; //修改元素值,此时dyn[0]仍为0,d2[0]为5

    dyn = new[20](dyn); //分配20个数值并进行复制,也就是dyn初始值5个元素复制给了新的dyn低5个元素,高15个元素为0.
    dyn = new[100]; //重新分配100个数值,而旧值不复存在
    dyn.delete(); //删除所有元素
end

队列

  • 队列结合了链表和数组的优点,可以在任何地方添加和删除元素,并且通过索引实现对任一元素的访问。
  • 队列的声明是使用美元符号的下标:[ ] ,队列元素标号从 0 到 ],队列元素标号从0到 ],队列元素标号从0
  • 队列不需要new[]去创建空间,只需要使用队列的方法为其增减元素,队列初始空间为零。
  • 队列的简单使用是通过 push_back()和pop_front() 的结合来实现FIFO的用法。
int j = 1;
int q2[$] = {3,4};
int q[$] = {0,2,5}; //队列的赋值不需要单引号

initial begin
    q.insert(1, j); //{0,1,2,5} 在1位置插入j
    q.insert(3, q2); //{0,1,2,3,4,5} 在3位置中插入队列q2
    q.delete(1); //{0,2,3,4,5} 删除队列中1位置元素

    //下列操作才是队列中最常用方法
    q.push_front(6); //{6,0,2,3,4,5} 在队列头部插入
    j = q.pop_back(); //{6,0,2,3,4} 在队列尾部弹出
    q.push_back(8); //{6,0,2,3,4,8} 在队列尾部插入
    j = q.pop_front(); //{0,2,3,4,8} 在队列头部弹出

    foreach(q[j])
        $display(q[j]); //打印整个队列

    q.delete(); //删除整个队列
end

关联数组

  • 如果需要一个超大容量存储空间,而有相当部分数据不会被存储和访问,不管使用定宽数组还是动态数组,都会造成存储的浪费,这时候需要使用关联数组。
  • 关联数组可以保存稀疏矩阵元素,当你对一个非常大的地址空间进行寻址时,该数组 只为写入的元素分配空间 ,所以关联数组需要的空间远小于定宽或动态数组。
  • 此外关联数组的灵活应用,在其他高级语言中都有类似的存储结构,比如Perl语言中称为哈希(Hash),Python中称为词典(Dictionary),可以灵活赋予key和value。

bit [63:0] assoc[int]; //声明关联数组,关联数组中[]内声明数据类型,也就是index类型
int index = 1;

repeat(64) begin //对稀疏分布的元素初始化
    assoc[index] = index;
    index = index <<1; //1 2 4 8 16 ......
end

foreach(assoc[i]) //使用foreach变量关联数组,注意:并不一定按index大小顺序依次执行(可以使用sort排序)
    $display("assoc[%d] = %h", i, assoc[i]);

//找到并删除第一个元素,使用if(assoc.first(index)) 可以判断数组是否为空
assoc.first(index); //将assoc第一个索引值赋给index
assoc.delete(index); //删除assoc的index索引元素

结构体

  • sv中可以使用struct语句创建结构,与c语言类似。
  • sv中struct功能较少,只可以定义一个 数据的集合 ,也就是将若干相关变量组合到一个struct结构定义中。
  • 通过 使用typedef和struct,可以定义新的数据类型 ,可利用新的数据类型声明变量。
//非合并结构
typedef struct {
    bit[7:0] r;
    bit[7:0] g;
    bit[7:0] b;
} pixel_str; //使用typedef和struct创建新的数据类型 pixel_str

pixel_str my_pixel; //使用新的数据类型声明变量
my_pixel = '{8'h10, 8'h20, 8'h30}; //结构体赋值,此时赋值与声明时一一对应

//合并结构
typedef struct {
    bit[7:0] r,
    bit[7:0] g,
    bit[7:0] b;
} pixel_str; //使用typedef和struct创建新的数据类型 pixel_str

pixel_str my_pixel; //使用新的数据类型声明变量
my_pixel = {8'h10, 8'h20, 8'h30}; //结构体赋值,此时赋值与声明时一一对应
  • 关于赋值时什么时候使用单引号:
    • 合并型存储的不需要使用单引号,就好比数据的拼接,队列是合并型存储的。
    • 非合并型存储需要使用单引号,如数组和结构体。

枚举类型

  • 规范的操作码和指令有利于代码的编写和维护,如ADD、WRITE、IDEL等。
  • 枚举类型enum经常 和typedef搭配使用 ,由此便于用户自定义枚举类型的共享使用。
  • 枚举类型 保证避免一些非期望值的出现 ,增加代码可维护性和降低设计风险。
typedef enum {INIT, DECODE, IDLE} fsmstate_e; //声明枚举类型和自定义数据类型
fsmstate_e pstate, nstate; //通过自定义枚举数据类型 声明变量

case(pstate) //枚举类型主要应用于状态机
    IDEL: nstate = INIT;
    INIT: nstate = DECODE;
    default: nstate = IDLE;
endcase

$display("Next state is %s", nstate.name()); //显示状态名

字符串

  • verilog语言中是不存在字符串的,而sv中添加了字符串string类型。
  • 所有相关的字符串处理,都使用string来保存和处理。
  • 字符串处理相关的格式化函数可以 使用 s f o r m a t f ( ) ,如果只是打印输出,可以直接使用 sformatf() ,如果只是打印输出,可以直接使用 sformatf(),如果只是打印输出,可以直接使用display()。
string s1, s2; //声明字符串,此时为空。
int i1, i2;

initial begin
    i1 = 2005;
    s1.itoa(i); // integer converted to string
    s2 = "IEEE";

    $display(s2.tolower()); //显示 ieee (转小写)

    s2 = {s2, "-P1800"}; //字符串拼接, "IEEE-P1800"
    s2 = $sformatf("%s%s", s1, "-P1800"); //字符串拼接, "IEEE-P1800"

    i2 = s2.len(); //获取字符串长度

    $display("@%t: %s", $time, $sformatf("%s %d", s2, 42)); //$sformatf返回字符串
end

过程块

  • 过程块有两种:initial和always。
  • initial是 不可综合的 ,为验证而生,always是 可综合的 ,代表硬件电路。
  • always是 硬件行为 ,可综合,使用时需要 区分时序电路描述和组合电路描述 。
  • initial是 软件行为 , 块内语句 顺序执行,且只执行一次 。
  • initial块和always块之间,以及不同initial块,不同always块,在 仿真一开始都是同时执行 的。
  • 在verilog时代,所有的测试都放在initial块中,并且为了便于统一管理,建议 放在同一个initial块中 。
  • module、interface可视为 硬件域 ,program、class可视为 软件域 ,区分硬件域和软件域对理解initial和always很有帮助。
  • initial块可以放在module、interface和program中;always块只能放在module、interface中。
  • 对于过程块,使用 begin…end 将其作用域包住,对于控制语句和循环语句,同样适用。

  • module 和 interface:这些是Verilog中用于描述硬件行为的构造。module通常用于描述硬件组件,如处理器、内存或其他功能单元,而interface则用于定义组件之间的通信协议。这些都属于硬件域,因为它们直接对应于硬件电路的行为。

  • program 和 class:这些是SystemVerilog(Verilog的一个超集)中引入的构造,主要用于描述软件行为。program通常用于定义测试程序,而class则用于创建可重用的对象。这些都属于软件域,因为它们更多地关注于描述仿真过程中的控制和数据流。

  • initial块:如上所述,initial块中的代码仅在仿真开始时执行一次。在硬件测试中,initial块通常用于初始化测试环境、生成激励信号、以及检查响应是否符合预期。由于测试通常需要在仿真开始时立即进行,并且只执行一次,因此将测试代码放在initial块中是合适的。

  • always块:与initial块不同,always块中的代码会在仿真期间不断重复执行。**它通常用于描述硬件的周期性行为,如时钟信号、中断处理等。**在软件仿真中,always块也可以用于实现循环和条件逻辑。

举个例子:

  • 硬件域示例
    假设我们有一个简单的Verilog module,描述了一个数字加法器:
module adder(  
    input [7:0] a, b,  
    output [7:0] sum  
);  
    assign sum = a + b;  
endmodule

这个module属于硬件域,因为它直接对应于一个加法器的硬件实现。

  • 软件域示例
    在SystemVerilog中,我们可以使用program和class来编写测试程序:
program test_adder;  
    adder uut; // 实例化加法器模块  
  
    initial begin  
        // 初始化测试  
        uut.a = 8'h12;  
        uut.b = 8'h34;  
          
        // 等待一段时间让加法器完成计算  
        #10;  
          
        // 检查结果  
        if (uut.sum == 8'h46) begin  
            $display("Test passed!");  
        end else begin  
            $display("Test failed!");  
        end  
          
        // 更多测试...  
    end  
endprogram

在这个例子中,program属于软件域,因为它用于描述测试程序的行为。我们使用initial块来初始化测试环境、生成激励信号,并检查结果是否符合预期。

综上所述,将测试代码放在initial块中,尤其是在Verilog时代,是一种常见的做法,因为它符合测试在仿真开始时立即执行的需求。

而随着SystemVerilog的引入,我们有更多的构造(如program和class)来支持更复杂的软件仿真和测试场景。

方法(函数与任务)

函数function

  • 可以在参数列表指定输入参数(input)、输出参数(output)、输入输出参数(inout)或者引用参数(ref),如果不指明默认为input。
  • 可以有返回值,也可以无返回值(void)。
  • 函数其他属性:
    • 默认数据类型为logic。
    • 数组可以作为形式参数传递。
    • function可以返回或不返回结果,返回结果需要使用关键字return,不返回需要声明为void function。
    • 只有数据变量可以在形式参数列表被声明为ref类型,而线网类型则不能声明为ref类型。
    • 使用ref时,有时为了保护参数对象只被读取不被修改,可以通过const的方式限定ref声明的参数。
    • 在声明参数时,可以设置默认值(input a=10),同时如果在调用时省略参数的传递,则函数中使用默认值。
function int double_f1(input int a);
    return 2*a;
endfunction

function void double_f2(constraint ref int a, ref int b);
    b = 2*a;
endfunction

initial begin
    int a;
    int b;
    double_f2(a, b);

    $display("double of %0d is %0d", 10, double_f1(10));
    $display("double of %0d is %0d", 10, b);
end

任务task

任务相比函数更加灵活,且有以下不同点:

  • task无法通过return返回结果(也无需加void),只能通过input、output、inout或ref的参数来返回。
  • task内 可以使用耗时语句 ,而function不能。常见的耗时语句如: @event、wait event、#delay 等。
task double_t1(input [31:0] a, output [31:0] b); //不指明方向则默认为input
    b = 2*a;
endtask

task double_t2(constraint ref int a, ref int b);
    b = 2*a;
endfunction

使用建议

  • 初学者傻瓜式用法,可以 全部采用task来定义方法 ,因为它可以内置耗时语句,也可不以内置耗时语句。
  • 经验者要区分两种方法, 非耗时方法使用function,耗时方法使用task ,也就是function中完成纯粹的逻辑运算,而task更多完成需要耗时的信号采样或者驱动等场景。
  • 调用function:在function和task内均可以调用其他function;用task,如果被调用task内使用了耗时语句,只能在task调用。

变量的声明周期

  • sv中数据的生命周期分为 动态(automatic)和静态(static) 。
  • 局部变量 的生命周期与其所在域共存亡,也就是在function/task中的临时变量, 在其被调用结束后,临时变量的生命周期也将终结 。
  • 全局变量 在程序执行 开始到结束一直存在 。
  • 如果数据变量被声明为automatic,那么在进入该进程/方法后,automatic变量会被创建,离开该进程/方法后,automatic变量被销毁。而static在仿真开始时被创建,而在进程/方法执行过程中,不会被销毁,且可以 被多个进程和方法所共享 。
  • module内全部是静态变量,代表真实的电路结构。
    对于automatic方法,其内部所有变量默认也是automatic。
  • 对于static方法,其内部所有变量默认也是static。
  • 对于static变量, 声明时应该对其做初始化 ,而初始化只会伴随它的生命周期执行一次,不会随着方法调用而多次初始化。
  • 在module、program、interface声明的变量,以及其他在task/function之外声明的变量,默认是静态变量,存在于是整个仿真阶段。

设计例化和连接

模块定义

module xprop (
// Outputs
out1,
// Inputs
clk, sel, din0
);
input       clk;
input       sel;
input [7:0] din0;

output      out1;

//......
//......

endmodule

模块例化

module testbench;
//......
//......

    xprop dut(
              // Outputs
              .out1                     (out1),
              // Inputs
              .clk                      (clk),
              .sel                      (sel),
              .din0                     (din0));
endmodule

模块连接

模块连接就是将硬件电路在测试平台进行例化,传统的verilog验证方法,在initial过程块产生激励,驱动硬件电路完成仿真。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/510940.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

12313124

c语言中的小小白-CSDN博客c语言中的小小白关注算法,c,c语言,贪心算法,链表,mysql,动态规划,后端,线性回归,数据结构,排序算法领域.https://blog.csdn.net/bhbcdxb123?spm1001.2014.3001.5343 给大家分享一句我很喜欢我话&#xff1a; 知不足而奋进&#xff0c;望远山而前行&am…

【Linux】进程管理(2):进程控制

一、进程创建&#xff1a;fork函数 我们在命令行中输入man fork 即可得到fork函数的函数接口的函数的使用方法。 我们可以看到&#xff0c;fork函数位于man手册的第2部分&#xff0c;由于第2部分通常是用于描述系统调用和库函数&#xff0c;所以我们可以了解到fork函数实际是一…

【总结】在嵌入式设备上可以离线运行的LLM--Llama

文章目录 Llama 简介运用另一种&#xff1a;MLC-LLM 一个令人沮丧的结论在资源受限的嵌入式设备上无法运行LLM&#xff08;大语言模型&#xff09;。 一丝曙光&#xff1a;tinyLlama-1.1b&#xff08;10亿参数&#xff0c;需要至少2.98GB的RAM&#xff09; Llama 简介 LLaMA…

自动驾驶的世界模型:综述

自动驾驶的世界模型&#xff1a;综述 附赠自动驾驶学习资料和量产经验&#xff1a;链接 24年3月澳门大学和夏威夷大学的论文“World Models for Autonomous Driving: An Initial Survey”。 在快速发展的自动驾驶领域&#xff0c;准确预测未来事件并评估其影响的能力对安全性…

ssm017网上花店设计+vue

网上花店的设计与实现 摘 要 网络技术和计算机技术发展至今&#xff0c;已经拥有了深厚的理论基础&#xff0c;并在现实中进行了充分运用&#xff0c;尤其是基于计算机运行的软件更是受到各界的关注。加上现在人们已经步入信息时代&#xff0c;所以对于信息的宣传和管理就很关…

[云呐]固定资产盘点报告哪个部门写

固定资产盘点报告通常由哪个部门来完成和签发呢?总体来说,固定资产盘点报告主要由资产管理部门或核算部门具体组织拟定并与财务部门共同签发。个别重大报告还需要上级领导或委员会研讨通过。  资产管理部门:  资产管理部门是直接负责公司固定资产管理工作的核心部门,它主导…

超市销售数据-python数据分析项目

Python数据分析项目-基于Python的销售数据分析项目 文章目录 Python数据分析项目-基于Python的销售数据分析项目项目介绍数据分析结果导出数据查阅 数据分析内容哪些类别比较畅销?哪些商品比较畅销?不同门店的销售额占比哪个时间段是超市的客流高封期?查看源数据类型计算本月…

浅谈iOS开发中的自动引用计数ARC

1.ARC是什么 我们知道&#xff0c;在C语言中&#xff0c;创建对象时必须手动分配和释放适量的内存。然而&#xff0c;在 Swift 中&#xff0c;当不再需要类实例时&#xff0c;ARC 会自动释放这些实例的内存。 Swift 使用 ARC 来跟踪和管理应用程序的内存&#xff0c;其主要是由…

EFPN代码解读

论文 Extended Feature Pyramid Network for Small Object Detection python3 D:/Project/EFPN-detectron2-master/tools/train_net.py --config-file configs/InstanceSegmentation/pointrend_rcnn_R_50_FPN_1x_coco.yaml --num-gpus 1 训练脚本 cfg 中的配置 先获取配置…

JavaWeb 项目运行配置

JavaWeb 项目运行配置

保持ssh断开后,程序不会停止执行

保持ssh断开后&#xff0c;程序不会停止执行 一、前言 笔者做远程部署搞了一阵子&#xff0c;快结项时发现一旦我关闭了ssh连接窗口&#xff0c;远程服务器会自动杀掉我在ssh连接状态下运行的程序。 这怎么行&#xff0c;岂不是想要它一直运行还得要一台电脑一直打开ssh连接咯…

【优选算法专栏】专题十六:BFS解决最短路问题---前言

本专栏内容为&#xff1a;算法学习专栏&#xff0c;分为优选算法专栏&#xff0c;贪心算法专栏&#xff0c;动态规划专栏以及递归&#xff0c;搜索与回溯算法专栏四部分。 通过本专栏的深入学习&#xff0c;你可以了解并掌握算法。 &#x1f493;博主csdn个人主页&#xff1a;小…

【QingHub】企业级应用开发管理

QingHub 企业级应用开发设计器是QingHub Studio的一个核心模块&#xff0c;它可以实现应用搭建、团队管理&#xff0c;共享开发&#xff0c;可以快速接入API接口&#xff0c;复杂功能可以通过自定义脚本快速实现业务逻辑。打通前端开发与后台业务逻辑一体化。通过可视化的方式&…

使用 PDManer 对数据库表建模(建表语句生成,代码生成)

目录 前言 基本使用教程 新建项目 创建表 关系图 建表语句 生成代码 导入 前言 在软件开发中过程中&#xff0c;一般分为几个过程&#xff1a;需求分析、概要设计、详细设计、编码实现、软件测试和软件交付。 在概要设计和详细设计过程中&#xff0c;则需要对业务进…

苍穹外卖06(HttpClient,微信小程序开发,微信登录流程,获取授权码从微信平台获取用户信息)

目录 一、HttpClient 1. 介绍 2. 入门案例 1 导入依赖(已有) 2 GET方式请求 2 POST方式请求 二、微信小程序开发 1. 介绍 2. 准备工作 1 注册小程序获取AppID 注册小程序 完善小程序信息 2 下载并安装开发者工具 3 设置小程序开发者工具(必做) 3. 入门案例 1 小…

CentOS 7 下离线安装RabbitMQ教程

CentOS 7 下安装RabbitMQ教程一、做准备&#xff08;VMWare 虚拟机上的 CentOS 7 镜像 上安装的&#xff09; &#xff08;1&#xff09;准备RabbitMQ的安装包&#xff08;rabbitmq-server-3.8.5-1.el7.noarch&#xff09;下载地址mq https://github.com/rabbitmq/rabbitmq-se…

基于51单片机的简易计算器设计

1、任务 本课题模拟计算器设计硬件电路采用三部分电路模块构成&#xff0c; 第一部分是键盘模块电路&#xff0c;采用4*4矩阵式键盘作为输入电路&#xff1b; 第二部分是LCD1602液晶显示模块&#xff1b; 第三部分是以51单片机作为控制核心。 软件程序主要由三部分组成&am…

AWS-EKS 给其他IAM赋予集群管理权限

AWS EKS 设计了权限管理系统&#xff0c;A用户创建的集群 B用户是看不到并且不能管理和使用kubectl的&#xff0c;所以我们需要共同管理集群时就需要操场共享集群访问给其他IAM用户。 两种方式添加集群控制权限&#xff08;前提&#xff1a;使用有管理权限的用户操作&#xff…

子集与全排列问题(力扣78,90,46,47)

系列文章目录 子集和全排列问题与下面的组合都是属于回溯方法里的&#xff0c;相信结合前两期&#xff0c;再看这篇笔记&#xff0c;更有助于大家对本系列的理解 一、组合回溯问题 二、组合总和问题 文章目录 系列文章目录题目子集一、思路二、解题方法三、Code 子集II一、思…

基于SSM的网上打印管理

摘要 进入二十一世纪以来&#xff0c;计算机技术蓬勃发展&#xff0c;人们的生活发生了许多变化。很多时候人们不需要亲力亲为的做一些事情&#xff0c;通过网络即可完成以往需要花费很多时间的操作&#xff0c;这可以提升人们的生活质量。计算机技术对人们生活的改变不仅仅包…