【与C++的邂逅】---- 函数重载与引用

在这里插入图片描述关注小庄 顿顿解馋(`▿´)
喜欢的小伙伴可以多多支持小庄的文章哦
📒 数据结构
📒 C++


引言 : 上一篇博客我们了解了C++入门语法的一部分,今天我们来了解函数重载,引用的技术,请放心食用 ~


文章目录

  • 一. 🏠 函数重载
    • 📒 函数重载的概念
    • 📒 函数重载的误区
      • 1.形参顺序不同是不同类型形参顺序不同
      • 2.函数返回值不是构成重载的条件
      • 3.函数在同一作用域才构成重载
      • 4.缺省参数不是构成重载的条件
    • 📒 C++支持函数重载的原因
  • 二. 🏠 引用
    • 📒 认识引用
    • 📒 引用特性
    • 📒 常引用
    • 📒 使用场景
    • 📒 传值 传引用 效率比较
    • 📒 引用的大小
    • 📒 引用和指针的区别

一. 🏠 函数重载

void Swap(int x ,int y)
{
   int tmp = 0;
   temp = x;
   x = y;
   y = temp;
}

这个函数想必不会陌生吧,可我们发现这个Swap函数只能交换整形,如果我同样调换这个函数就能交换浮点型呢?这里C++就给我们提供了函数重载的技术。

📒 函数重载的概念

函数重载:是函数的一种特殊情况,C++允许在同一作用域中声明几个功能类似的同名函数,这些同名函数的形参列表(参数个数或类型或类型顺序)不同,常用来处理实现功能类似数据类型不同的问题。

我们上代码来感受一下

形参类型不同

#include<iostream>
using namespace std;
// 1、参数类型不同
int Add(int left, int right)
{
  cout << "int Add(int left, int right)" << endl;
  return left + right;
}
double Add(double left, double right)
{
  cout << "double Add(double left, double right)" << endl;
  return left + right;
}

形参个数不同

void f()
{
 cout << "f()" << endl;
}
void f(int a)
{
 cout << "f(int a)" << endl;
}

形参顺序不同

void f(int a, char b)
{
  cout << "f(int a,char b)" << endl;
}
void f(char b, int a)
{
  cout << "f(char b, int a)" << endl;
}

只要满足一个条件即可发生重载

📒 函数重载的误区

1.形参顺序不同是不同类型形参顺序不同

void f(int a, int b)
{
	cout << "f(int a,char b)" << endl;
}
void f(int b,int a)
{
	cout << "f(int a,char b)" << endl;
}

这里形参顺序不同坑定能正常编译吧老铁,实则不然
在这里插入图片描述
注:函数重载形参顺序不同,指的是不同类型形参的顺序不同

2.函数返回值不是构成重载的条件

int func()
{
	cout << "use int func()" << endl;
	return 0;
}
void func()
{
	cout << "use void func(int a)" << endl;
}

对于这段代码同样不能正常编译,函数返回值不作为函数重载的条件,首先函数这里会产生调用歧义(语法上调哪一个都可以),同时函数返回值不一定要接收

3.函数在同一作用域才构成重载

namespace N1
{
	void Mul(int a, int b)
	{
		cout << a * b << endl;
	}
}
namespace N2
{
	void Mul(int a, int b)
	{
		cout << a * b * 2 << endl;
	}
}

此时这两个函数是否构成重载呢?
注:函数重载是要在同一作用域下的,这里N1和N2是两个不同的命名空间域
注:不同域可以定义同名,相同域也可以但要符合重载条件。

那如果我展开他们的命名空间呢?

using namespace N1;
using namespace N2;
Mul(1,2);
Mul(1,3);

此时这两个函数虽然都展开引入了全局域中,但仍然不构成重载,会产生调用歧义。

4.缺省参数不是构成重载的条件

void func(int a = 10)
{
  cout << "func(int a = 10)" << endl;
}
void func(int a = 2)
{
  cout << "func(int a = 2)" << endl;
}

能否构成函数重载呢?编译器会给我们答案
在这里插入图片描述
很显然,缺省参数是不构成函数重载的条件的

如果是这样呢?

void func()
{
  cout << "func(int a = 10)" << endl;
}
void func(int a = 2)
{
  cout << "func(int a = 2)" << endl;
}

此时两个函数确实构成重载,但会发生调用歧义。

📒 C++支持函数重载的原因

我们知道在C语言中函数不能同名,那为什么C++就支持重载,C语言不支持呢?我们得先来回顾一下编译和链接的过程

  • C语言

    编译链接的过程大致如下,可以参考博主之前写的文章编译与链接
    在这里插入图片描述
    在链接时,我们会进行符号决议和重定位,也就是我们调用函数时,编译器会根据函数名符号表中的符号去找函数地址,与我们.c文件调用的符号链接起来

补充:

  1. 在只有函数声明的文件中,在编译过程中没有函数的地址,但能通过语法检查
  2. 有函数定义才能形成一系列的汇编指令,函数定义的第一条就是函数的地址

总结:C语言直接通过函数名字去查找函数,这样无法区分,故不支持重栽

  • C++
    与C语言不同的是,C++在链接时是通过修饰后的函数名去查找,可以起到区分的作用,因此支持重载。

具体是怎么重载的呢?我们上图

//g++编译器 Linux环境
void f(int a,char b);
void f(char a,int b);

在这里插入图片描述
在这里插入图片描述
我们可以发现由于形参列表的不同(c表示char i表示int),构成了修饰名的不同,编译器将函数参数类型信息添加到原函数名后

小补充:在不同的平台,函数名的修饰规则是不同的。

windows系统
在这里插入图片描述

对比Linux会发现,windows下vs编译器对函数名字修饰规则相对复杂难懂,但道理都是类似的,我们就不做细致的研究了。

二. 🏠 引用

📒 认识引用

  • 引用的概念

引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空间,它和它引用的变量共用同一块内存空间。

  • 引用的语法形式
类型& 引用变量名(对象名) = 引用实体;// 注意引用类型要和它的引用实体的类型相同
int a = 10;
int& b = a;
cout << &a << endl;
cout << &b << endl;
int* p = &a;
int* & =  p;
double d = 1.0;
double& pd = d;

输出
008FF838
008FF838 // 引用和变量确实共用一块空间

📒 引用特性

  • 引用定义时必须初始化
int x = 0;
int& a = x;
  • 一个变量可以有多个引用
int x = 0;
int & a = x;
int & b = x;
int & c = b;
c++;//这里c改变a b x都会改变
  • 引用一旦初始化,不可改变引用实体
int a = 0;
int b = 1;
int& pa = a;
pa = b ; //这里是把b的值赋给a/pa;

📒 常引用

权限的平移

int x = 0;
int &y = x ;
//引用
const int m = 10;//此时m是只读
const int & pm = m;
//指针
const int* p1 = &m;
const int* p2 = p1;

权限的放大

//引用
const int m = 10;
int& r = m; //此时m只能读取,int&是可读可写 权限放大是不行的

//指针
const int* p1 = &m;
int* p2 = p1;//p1只读 权限放大不可以

//普通变量赋值的拷贝
in p = m; //此时是把m的值拷贝给p,p的修改不影响m

权限的缩小

int x = 0;
//引用
const int& z = x;
//z++不行 因为只能读
//指针
int* p3 = &x;
const int* p4 = p3;
double d = 1.9;
//int& t = d; 会报错
const int& r = d;

int x = 1,y = 0;
const int& r = x + y;
//int& pr = x + y; 会报错

在类型转换和表达式求值时,会产生临时变量(因为要存储他们运算后的结果),而临时变量具有常性(相当于被const修饰,只读),这里用int&接收造成权限的放大。

总结:对于指针和引用权限可以平行缩小,但不能放大;普通变量赋值没有权限之说。

📒 使用场景

  • 作为函数的形参
void Swap(int& left, int& right)
{
   int temp = left;
   left = right;
   right = temp;
}
  • 作为返回值
int& Count()
{
   static int n = 0;
   n++;
   // ...
   return n;
}

📒 传值 传引用 效率比较

#include <time.h>
struct A{ int a[10000]; };
void TestFunc1(A a){}
void TestFunc2(A& a){}
void TestRefAndValue()
{
 A a;
 // 以值作为函数参数
 size_t begin1 = clock();
 for (size_t i = 0; i < 10000; ++i)
 TestFunc1(a);
 size_t end1 = clock();
 // 以引用作为函数参数
 size_t begin2 = clock();
 for (size_t i = 0; i < 10000; ++i)
 TestFunc2(a);
 size_t end2 = clock();
// 分别计算两个函数运行结束后的时间
 cout << "TestFunc1(A)-time:" << end1 - begin1 << endl;
 cout << "TestFunc2(A&)-time:" << end2 - begin2 << endl;
}

输出结果
“TestFunc1(A)-time:” :27
“TestFunc2(A&)-time:”:0

总结:传引用比传值效率高出很多,可以认为在语法层面上传引用几乎没开空间

那是否引用真的没开空间呢?

int x = 2;
int* p = &x;
int& pr = x;

在这里插入图片描述
我们转到反汇编观察发现,定义引用时其实也是把变量的地址放到引用变量里。
换句话说,引用的底层也是指针,基于这个理解,我们来看下面的问题。

📒 引用的大小

#include<iostream>
using namespace std;
//x64
cout << sizeof(int&) << endl;
cout << sizeof(short&) << endl;
cout << sizeof(long&) << endl;
//x86
cout << sizeof(int&) << endl;
cout << sizeof(short&) << endl;
cout << sizeof(long&) << endl;

输出结果:
x64环境下
4
2
4
x86环境下
4
2
4

总结:引用大小在语法层面上规定是它引用实体类型大小,毕竟引用是一种语法,sizeof没有意义

那如果是这样呢?

#include<iostream>
using namespace std;
struct Test
{
int& age;
}
struct Test t;
cout << sizeof(t)<<endl;

结合我们之前学的结构体内存对齐知识,这里输出结果是否应该等于4?

输出结果:
32位环境下
4
64位环境下
8
//你是否感到疑惑?同时我这里为什么要以环境来区分?

实际上,结合我们之前的结论引用底层实质是个地址,当我们用结构体定义出一个实际的对象时,底层就有了蓝图,那就需要去翻译和识别它是个指针类型了。

📒 引用和指针的区别

指针引用
指针存的是变量的地址引用是变量的别名
有空指针NULL没有空引用
有多级指针没有多级引用
指针可以改变指向引用初始化后不可改变引用实体
指针相对安全性低引用相对安全性高
sizeof(指针)始终是地址空间所占字节大小引用大小为引用实体类型的大小
自增是向后偏移一个类型的大小自增是引用实体增加
指针访问实体要解引用引用访问实体编译器自己处理
指针不一定要初始化引用一定要初始化

学到知识的小伙伴,不妨给小庄一个三连呀 ~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/510753.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

windows搭建ftp实现局域网共享文件

一、开启ftp服务 1.使用 win Q 键&#xff0c;快捷打开搜索框 2.搜索框内搜索 “控制面板” 3. 进入控制面板内选择 ”程序“ 4. 单击进入 “启用或关闭windows功能” 5. 找到并展开“internet information services”、 6. 建议展开后全选 “FTP服务器” 和 “web管理工…

OpenHarmony实战:轻量系统芯片移植

本文从芯片适配的端到端视角&#xff0c;为芯片/模组制造商提供基于OpenHarmony的芯片适配指导。典型的芯片架构&#xff0c;例如cortex-m、risc-v系列都可以按照本文档进行适配移植。 约束与限制 本文档适用于OpenHarmony LTS 3.0.1及之前版本的轻量系统的适配。 说明&#…

Redis中的复制功能(三)

复制 服务器运行ID 除了复制偏移量和复制积压缓冲区之外&#xff0c;实现部分重同步还需要用到服务器运行ID(run ID): 1.每隔Redis服务器&#xff0c;不论主服务器还是从服务&#xff0c;都会有自己的运行ID2.运行ID在服务器启动时自动生成&#xff0c;由40个随机的十六进制…

ndk ffmpeg

报错&#xff1a; 解决办法&#xff1a; 报错 解决办法&#xff1a;

大模型量化技术-GPTQ

大模型量化技术-GPTQ 2022年,Frantar等人发表了论文 GPTQ:Accurate Post-Training Quantization for Generative Pre-trained Transformers。 这篇论文详细介绍了一种训练后量化算法,适用于所有通用的预训练 Transformer模型,同时只有微小的性能下降。 GPTQ算法需要通过…

vscode安装通义灵码

作为vscode的插件&#xff0c;直接使用 通义灵码-灵动指间&#xff0c;快码加编&#xff0c;你的智能编码助手 通义灵码&#xff0c;是一款基于通义大模型的智能编码辅助工具&#xff0c;提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研…

性能测试?

一、什么是性能测试 先看下百度百科对它的定义 性能测试是通过自动化的测试工具模拟多种正常、峰值以及异常负载条件来对系统的各项性能指标进行测试。我们可以认为性能测试是&#xff1a;通过在测试环境下对系统或构件的性能进行探测&#xff0c;用以验证在生产环境下系统性…

苹果手表Apple Watch录了两个半小时的录音,却只能播放4秒,同步到手机也一样,还能修复好吗?

好多人遇到这个情况&#xff0c;用苹果手表Apple Watch录音&#xff0c;有的录1个多小时&#xff0c;有的录了3、4小时&#xff0c;甚至更长时间&#xff0c;因为手表没电&#xff0c;忘记保存等原因造成录音损坏&#xff0c;都是只能播放4秒&#xff0c;同步到手机也一样&…

Java8 Stream API全面解析——高效流式编程的秘诀

文章目录 什么是 Stream Api?快速入门流的操作创建流中间操作filter 过滤map 数据转换flatMap 合并流distinct 去重sorted 排序limit 限流skip 跳过peek 操作 终结操作forEach 遍历forEachOrdered 有序遍历count 统计数量min 最小值max 最大值reduce 聚合collect 收集anyMatch…

git源码泄露

Git 源码泄露 开发人员会使用 git 进行版本控制&#xff0c;对站点自动部署。但如果配置不当&#xff0c;可能会将 .git 文件夹直接部署到线上环境&#xff0c;这就引起了 git 泄露漏洞&#xff0c;我们可以利用这个漏洞直接获得网页源码。 确定是否存在泄漏 &#xff08;1&…

java项目基于Springboot和Vue的高校心理教育辅导系统的设计与实现

今天要和大家聊的是基于Springboot和Vue的高校心理教育辅导系统的设计与实现 &#xff01;&#xff01;&#xff01; 有需要的小伙伴可以通过文章末尾名片咨询我哦&#xff01;&#xff01;&#xff01; &#x1f495;&#x1f495;作者&#xff1a;李同学 &#x1f495;&…

大模型之路3:趟到了Llama-Factory,大神们请指点

各种AI工具和框架层出不穷&#xff0c;为开发者和研究者提供了前所未有的便利。当然了&#xff0c;也有困扰。尤其是对于动手能力越来越弱的中年油腻老程序员来说&#xff0c;更是难上加难。据说&#xff0c;嗯&#xff0c;据师弟说&#xff0c;说LlamaFactory凭借其独特的功能…

实验:基于Red Hat Enterprise Linux系统的创建磁盘和磁盘分区(一)

目录 一. 实验目的 二. 实验内容 三. 实验设计描述及实验结果 fdisk [参数] [设备] 1. 为虚拟机添加1块大小为3-5G的硬盘nvme&#xff0c;将该硬盘划分1个主分区和两个逻辑分区分别为600MB。 partprobe [选项] [设备] 2. 将主分区格式化为ext4文件系统并挂载到/自己名字命名…

Screeps Arena 游戏基础教程

一. 游戏内教程汉化1. 循环和导入&#xff08;Loop and Import&#xff09;2. 简单移动&#xff08;Simple move&#xff09;3. 首次攻击&#xff08;First Attack&#xff09;4. 爬虫的身体部分&#xff08;Creeps Bodies&#xff09;5. 存储和转移 &#xff08;Store and Tra…

合并两个单链表

归纳编程学习的感悟&#xff0c; 记录奋斗路上的点滴&#xff0c; 希望能帮到一样刻苦的你&#xff01; 如有不足欢迎指正&#xff01; 共同学习交流&#xff01; &#x1f30e;欢迎各位→点赞 &#x1f44d; 收藏⭐ 留言​&#x1f4dd; 但行前路&#xff0c;不负韶华&#…

dataloader numworkers

numworkers是加载数据的额外cpu数量&#xff08;也可以看成额外的进程&#xff09;。可以理解是&#xff1a; dataset中的getitem只能得到单个数据&#xff0c; 而numworker设置后是同时加载numwork个数据到RAM中&#xff0c;当需要数据时&#xff0c;不会重新执行getiem的方法…

代码随想录算法训练营第四十二天 | 卡码网46. 携带研究材料、416. 分割等和子集

代码随想录算法训练营第四十二天 | 卡码网46. 携带研究材料、416. 分割等和子集 卡码网46. 携带研究材料题目解法 416. 分割等和子集题目解法 感悟 卡码网46. 携带研究材料 题目 解法 题解链接 二维数组 # include <bits/stdc.h> using namespace std;int n, bagweig…

读取信息boot.bin和xclbin命令

bootgen读Boot.bin命令 johnjohn-virtual-machine:~/project_zynq/kv260_image_ubuntu22.04$ bootgen -read BOOT-k26-starter-kit-202305_2022.2.bin xclbinutil读xclbin命令 johnjohn-virtual-machine:~/project_zynq/kv260_image_ubuntu22.04$ xclbinutil -i kv260-smartca…

【Vue】vue3简介与环境配置

文章目录 项目编码规范什么是 Vue&#xff1f;安装node环境nvm针对node版本惊醒管理的工具 项目编码规范 组合式API Typescript setup(语法糖) 什么是 Vue&#xff1f; Vue 是一款用于构建用户界面的 JavaScript 框架。它基于标准 HTML、CSS 和 JavaScript 构建&#xff0c;…

Linux系统下安装jdk与tomcat【linux】

一、yum介绍 linux下的jdk安装以及环境配置&#xff0c;有两种常用方法&#xff1a; 1.使用yum一键安装。 2.手动安装&#xff0c;在Oracle官网下载好需要的jdk版本&#xff0c;上传解压并配置环境。 这里介绍第一种方法&#xff0c;在此之前简单了解下yum。 yum 介绍 yum&…