整型之韵,数之舞:大小端与浮点数的内存之旅

在这里插入图片描述
✨✨欢迎👍👍点赞☕️☕️收藏✍✍评论

个人主页:秋邱’博客

所属栏目:人工智能

(感谢您的光临,您的光临蓬荜生辉)

1.0 整形提升

我们先来看看代码。

int main()
{
	char a = 3;
	char b = 127;
	char c = a + b;
	pritnf("%d", c);
	return 0;
}

这是char类型的相加,但你以为答案是130,那就是错了,事实没那么简单。

1.1 什么是整形提升

C语⾔中整型算术运算总是⾄少以缺省整型类型的精度来进⾏的。
为了获得这个精度,表达式中的字符和短整型操作数在使⽤之前被转换为普通整型,这种转换称为
型提升。

1.2 如何整形提升?

规则:

  1. 有符号整数提升是按照变量的数据类型的符号位来提升的
  2. ⽆符号整数提升,⾼位补0

打印结果:

-126

分析

	char a = 3;
	00000000000000000000000000000011  //3的二进制
	00000011 char a
	char b = 127;
	00000000000000000000000001111111  //127的二进制
	01000000 char b
	char c = a + b;
	00000011 char a
	01000000 char b  //这里还不能直接相加,要对a和b进行整形提升
    //在vs下char是有符号的char,所以对char a进行整形的提升,符号位是0
	00000000000000000000000000000011 //char a的整形提升
	//同理,char b也是有符号的char,符号位是0
	00000000000000000000000001111111 //char b的整形提升
	00000000000000000000000010000010 //a + b,d但是char c中只能存放8个比特位
	10000010 //char c
	printf("%d", c);//%d是按十进制打印有符号的整数,但我们是char c,所以需要进行整形提升
	//char c是有符号数,最高位是1全补1.
	11111111111111111111111110000010 //char c整形提升的结果(补码)
	//打印的方式是原码,我们要对c补码进行,取反+1
	00000000000000000000000001111110 //原码
	//结果是-127

1.3 整形提升的意义

表达式的整型运算要在CPU的相应运算器件内执⾏,CPU内整型运算器(ALU)的操作数的字节⻓度⼀般就是int的字节⻓度,同时也是CPU的通⽤寄存器的⻓度。因此,即使两个char类型的相加,在CPU执⾏时实际上也要先转换为CPU内整型操作数的标准⻓ 度。 通⽤CPU(general-purposeCPU)是难以直接实现两个8⽐特字节直接相加运算(虽然机器指令中可能有这种字节相加指令)。所以,表达式中各种⻓度可能⼩于int⻓度的整型值,都必须先转换为 int或unsigned int,然后才能送⼊CPU去执⾏运算。

也就是说,小于整形的类型就要进行提升。

注意:char的是unsigned char 还是 signed char ,这是不确定的,而是取决于编译器。
但常见的编译器上char 一般都是signed char。

2.0 算术转换

如果某个操作符的各个操作数属于不同的类型,那么除⾮其中⼀个操作数的转换为另⼀个操作数的类
型,否则操作就⽆法进⾏。下⾯的层次体系称为寻常算术转换

long double
double
float
unsigned long int
long int
unsigned int
int

如果某个操作数的类型在上⾯这个列表中排名靠后,那么⾸先要转换为另外⼀个操作数的类型后执⾏
运算。

3.0 大小端

3.1 什么是大小端

大端小端是计算机存储数据的一种方式。在内存中,数据被分割为多个字节进行存储。大小端指的是字节的存储顺序。

大端存储是指高位字节被存储在低位地址,低位字节存储在高位地址。大端存储方式常用于网络协议中。

小端存储是指低位字节被存储在低位地址,高位字节存储在高位地址。小端存储方式常用于x86架构的计算机。
在这里插入图片描述我们在vs2022提示可知,vs2022中采用的是小端存储的方式。

图示:

在这里插入图片描述
接下里我们用程序来判断vs2022里的是大端还是小端。

3.2 判断大小端

3.2.1指针判断

#include<stdio.h>
int check_sys()
{
	int i = 1;
	return *(char*)&i;

}
int main()
{
	int ret = check_sys();
	if (ret == 1)
	{
		printf("小端");
	}
	else
	{
		printf("大端");
	}
	return 0;
}

3.2.2联合体判断

int check_sys()
{
	union check {
		char j;
		int i;
	};
	union check u = { 0 };
	u.j = 1;
	return u.j;

}
int main()
{
	int ret = check_sys();
	if (ret == 1)
	{
		printf("小端");
	}
	else
	{
		printf("大端");
	}
	return 0;
}

打印结果:

小端

3.3大小端的意义

我们知道了大小端,然后有什么用呢?

  1. 确保数据传输的准确性:在不同系统或设备之间进行数据交换时,了解大小端可以确保数据被正确解释。
  2. 兼容不同的系统:有助于软件在各种平台上的移植和运行。
  3. 优化性能:根据大小端特点进行针对性的优化。
  4. 调试和排错:当出现数据解析问题时,能更快地定位问题。
  5. 理解系统架构:加深对计算机系统内部工作原理的理解。
  6. 网络通信:确保网络协议的正确实现和数据的无误传输。
  7. 硬件设计:对硬件设计和开发具有指导意义。
  8. 数据恢复:在数据恢复过程中,正确解读存储的数据。
  9. 提高编程效率:避免因大小端问题导致的错误。
  10. 增强系统安全性:防止因数据解读错误引发的安全漏洞。

两种存储方式的区别在于字节的存储顺序,对于单个字节的操作没有影响,但对于多个字节的数据,如整数和浮点数,字节顺序的不同会导致数据的解释和处理方式不同。因此,当不同大小端的计算机之间进行数据传输时,需要进行字节序的转换。

4.0浮点数在内存中的存储

浮点数在内存中的存储是怎么样的呢,跟整形的存储一样吗?答案:不是!接下里往下看。

4.1 浮点数的存储

根据国际标准IEEE(电⽓和电⼦⼯程协会)754,任意⼀个⼆进制浮点数V可以表⽰成下⾯的形式:

V = (−1) ^S*M *2^E
• (-1)^S 表⽰符号位,当S=0,V为正数;当S=1,V为负数
• M表⽰有效数字,M是⼤于等于1,⼩于2的
• 表⽰指数位

二进制对应的十进制图
在这里插入图片描述
举例
⼗进制的5.0,写成⼆进制是101.0 ,相当于1.01×2^2 。
那么,按照上⾯V的格式,可以得出S=0,M=1.01,E=2。
⼗进制的-5.0,写成⼆进制是-101.0 ,相当于-1.01×2^2 。那么,S=1,M=1.01,E=2。
IEEE 754规定:
对于32位的浮点数,最⾼的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M对于64位的浮点数,最⾼的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M。

float类型浮点数内存分配
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/1b0c0e99b9084031924925b93dc6b415.png)
double类型浮点数内存分配
![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/6cf9f51a9a614d388262edfa1a31cc8b.png)

4.2 浮点数存的过程

IEEE 754对有效数字M和指数E,还有⼀些特别规定。
对于M
1≤M<2 ,也就是说,M可以写成1.xxxxxx 的形式,其中xxxxxx
表⽰⼩数部分。IEEE 754规定,在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后⾯的xxxxxx部分。⽐如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的⽬的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保存24位有效数字。
对于E
,E为⼀个⽆符号整数(unsignedint)
这意味着,如果E为8位,它的取值范围为0255;如果E为11位,它的取值范围为02047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE754规定,存⼊内存时E的真实值必须再加上⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。⽐如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

4.3 浮点数取的过程

指数E取出内存,情况有三。
1.E不全为0或不全为1
这时,浮点数就采⽤下⾯的规则表⽰,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第⼀位的1。
⽐如:0.5的⼆进制形式为0.1,由于规定正数部分必须为1,即将⼩数点右移1位,则为1.0*2^(-1),其阶码为-1+127(中间值)=126,表⽰为01111110,⽽尾数1.0去掉整数部分为0,补⻬0到23位00000000000000000000000,则其⼆进制表⽰形式为:

 0 01111110 00000000000000000000000

2.E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,⽽是还原为0.xxxxxx的⼩数。这样做是为了表⽰±0,以及接近于0的很⼩的数字。

0 00000000 00100000000000000000000

3.E全为1
这时,如果有效数字M全为0,表⽰±⽆穷⼤(正负取决于符号位s);

0 11111111 00010000000000000000000

这一篇到这里就完结了,感谢各位的观看。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/510618.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

枚举---算法

1、定义 枚举算法&#xff1a;也称之为穷举算法&#xff0c;这种算法就是在解决问题的时候去使用所有的方式去解决这个问题&#xff0c;会通过推理去考虑事件发生的每一种可能&#xff0c;最后推导出结果。优点&#xff1a;简单粗暴&#xff0c;它暴力的枚举所有可能&#xff…

算法学习——LeetCode力扣图论篇1(797. 所有可能的路径、200. 岛屿数量、695. 岛屿的最大面积)

算法学习——LeetCode力扣图论篇1 797. 所有可能的路径 797. 所有可能的路径 - 力扣&#xff08;LeetCode&#xff09; 描述 给你一个有 n 个节点的 有向无环图&#xff08;DAG&#xff09;&#xff0c;请你找出所有从节点 0 到节点 n-1 的路径并输出&#xff08;不要求按特…

STM32 DWT数据观察触发器作为延时函数的使用

STM32 DWT数据观察触发器作为延时函数的使用 &#x1f4d1;DWT(Data Watchpoint and Trace数据观察触发器&#xff09;描述 &#x1f4dd;DWT是属于处理器内核单元中的调试组件之一&#xff0c;由四个比较器组成。它们可配置为&#xff1a;硬件监视点或对ETM或PC采样器或数据地…

Ubuntu20.04安装MatlabR2018a

一、安装包 安装包下载链接 提取码&#xff1a;kve2 网上相关教程很多&#xff0c;此处仅作为安装软件记录&#xff0c;方便后续软件重装&#xff0c;大家按需取用。 二、安装 1. 相关文件一览 下载并解压文件后&#xff0c;如下图所示&#xff1a; 2. 挂载镜像并安装 2…

06 | Swoole 源码分析之 Coroutine 协程模块

首发原文链接&#xff1a;Swoole 源码分析之 Coroutine 协程模块 大家好&#xff0c;我是码农先森。 引言 协程又称轻量级线程&#xff0c;但与线程不同的是&#xff1b;协程是用户级线程&#xff0c;不需要操作系统参与。由用户显式控制&#xff0c;可以在需要的时候挂起、或…

回顾快速排序

快速排序 快速排序的核心&#xff1a; 找到一个key 通常左边的数比key小&#xff0c;右边的数比key大。 找key通常有三种方法&#xff1a; 1. 挖坑法&#xff1a; 代码实现&#xff1a; // int _pivot(int* a, int left, int right) {int begin left, end right;int in…

动态图学习新突破!最新SOTA实现性能全面升级,效率与精度兼得

现实世界中的许多图数据是动态变化的&#xff0c;比如社交网络、交通流量等。而传统的图学习方法通常处理的是静态图&#xff0c;这就导致它缺乏处理动态变化的能力&#xff0c;在适应性方面存在局限性。 相较之下&#xff0c;动态图学习能够捕捉到图数据的动态变化&#xff0…

MuJoCo 入门教程(一)

系列文章目录 前言 一、简介 MuJoCo 是多关节接触动力学&#xff08;Multi-Joint dynamics with Contact&#xff09;的缩写。它是一个通用物理引擎&#xff0c;旨在促进机器人、生物力学、图形和动画、机器学习以及其他需要快速、准确地仿真铰接结构与环境交互的领域的研究和开…

ssm016基于 Java Web 的校园驿站管理系统+jsp

校园驿站管理系统的设计与实现 摘 要 互联网发展至今&#xff0c;无论是其理论还是技术都已经成熟&#xff0c;而且它广泛参与在社会中的方方面面。它让信息都可以通过网络传播&#xff0c;搭配信息管理工具可以很好地为人们提供服务。针对校园快递信息管理混乱&#xff0c;出…

阿里云优惠券如何领取使用?

阿里云是阿里巴巴旗下云计算及人工智能科技公司&#xff0c;提供云服务器、云数据库、云存储等云计算服务和云解决方案。为了吸引更多的用户&#xff0c;阿里云经常推出各种优惠活动&#xff0c;其中就包括阿里云优惠券。本文将为大家详细介绍阿里云优惠券领取方法及使用教程&a…

Nginx 基础

文章目录 Nginx概念安装下载上传安装包执行准备条件指定安装位置编译和安装启动服务创建启动脚本 linux文件目录nginx运行原理nginx配置域名概念和原理域名配置 Nginx 概念 Nginx 是一个高性能的HTTP和反向代理web服务器&#xff0c;同时也提供了IMAP/POP3/SMTP服务。Nginx是…

211基于matlab的多类结构动力学

基于matlab的多类结构动力学&#xff0c;凸轮机构、双凸轮、弦振动模拟、阻尼振动 、四连杆机构 、套杆运动 、三根弹簧作用的振子。程序已调通&#xff0c;可直接运行。 211 matlab 结构动力学 根弹簧作用的振子 - 小红书 (xiaohongshu.com)

javaweb学习(day10-服务器渲染技术)

一、基本介绍 1.前言 目前主流的技术是 前后端分离 (比如: Spring Boot Vue/React)JSP 技术使用在逐渐减少&#xff0c;但使用少和没有使用是两个意思&#xff0c;一些老项目和中小公司还在使用 JSP&#xff0c;工作期间&#xff0c;你很有可能遇到 JSPJSP 使用在减少(但是现…

Python深度学习034:cuda的环境如何配置

文章目录 1.安装nvidia cuda驱动CMD中看一下cuda版本:下载并安装cuda驱动2.创建虚拟环境并安装pytorch的torch_cuda3.测试附录1.安装nvidia cuda驱动 CMD中看一下cuda版本: 注意: 红框的cuda版本,是你的显卡能装的最高的cuda版本,所以可以选择低于它的版本。比如我的是11…

人工智能|深度学习——基于Xception算法模型实现一个图像分类识别系统

一、Xception简介 在计算机视觉领域&#xff0c;图像识别是一个非常重要的任务&#xff0c;其应用涵盖了人脸识别、物体检测、场景理解等众多领域。随着深度学习技术的发展&#xff0c;深度卷积神经网络&#xff08;Convolutional Neural Networks&#xff0c;简称CNN&#xff…

阿赵UE学习笔记——24、动画播放控制

阿赵UE学习笔记目录   大家好&#xff0c;我是阿赵。   继续学习虚幻引擎的使用。关于UE的动画系统&#xff0c;之前学习了很多&#xff0c;包括动画合成或者动画蒙太奇等&#xff0c;实际上最后得到的都是一个动画片段。那么这些动画片段&#xff0c;是需要怎样播放控制呢…

乐观锁解决超卖问题

3.6 乐观锁解决超卖问题 修改代码方案一、 VoucherOrderServiceImpl 在扣减库存时&#xff0c;改为&#xff1a; boolean success seckillVoucherService.update().setSql("stock stock -1") //set stock stock -1.eq("voucher_id", voucherId).eq(&q…

STM32-02基于HAL库(CubeMX+MDK+Proteus)GPIO输出案例(LED流水灯)

文章目录 一、功能需求分析二、Proteus绘制电路原理图三、STMCubeMX 配置引脚及模式&#xff0c;生成代码四、MDK打开生成项目&#xff0c;编写HAL库的GPIO输出代码五、运行仿真程序&#xff0c;调试代码 一、功能需求分析 在完成开发环境搭建之后&#xff0c;开始使用STM32GP…

TCP和UDP区别和使用场景

TCP 和 UDP 是计算机⽹络中两种常⽤的传输层协议&#xff0c;⽤于实现可靠传输和⽆连接传输。 TCP TCP&#xff08;Transmission Control Protocol&#xff09;是⼀种⾯向连接的、可靠的传输协议。它通过三次握⼿四次挥⼿进⾏连接和断开链接&#xff0c;保证数据的可靠性、…

H5类似Word文档输入框小记

最近一个需求在客户端编辑输入超长文本带下划线。 最开始的input、textarea无法像span一样换行pass了。柳暗无天日之际&#xff0c;被投喂了一个contenteditable 。试了一下&#xff0c;嗯... 乌龟看绿豆--对眼了。 div 加上 contenteditable 后便继承了inputEvent 开启输入模…