文章目录
- list的介绍及使用
- list的介绍
- list的构造
- list iterator的使用
- list capacity
- list element access
- list modifiers
- list模拟实现
- list节点类
- list迭代器类
- list类
- list深度剖析
- list迭代器失效
- list反向迭代器
- list与vector对比
list的介绍及使用
list的介绍
1.list的底层是双向循环链表,每个元素的地址空间不连续。
2.list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高 效。
4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。
5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素)。
list的构造
构造函数( (constructor)) | 接口说明 |
---|---|
list (size_type n, const value_type& val = value_type()) | 构造的list中包含n个值为val的元素 |
list() | 构造空的list |
list (const list& x) | 拷贝构造函数 |
list (InputIterator first, InputIterator last) | 用[first, last)区间中的元素构造list |
list iterator的使用
函数声明 | 接口说明 |
---|---|
begin + end | 返回第一个元素的迭代器+返回最后一个元素下一个位置的迭代器 |
rbegin + rend | 返回第一个元素的reverse_iterator,即end位置,返回最后一个元素下一个位置的reverse_iterator,即begin位置 |
注意:
- begin与end为正 , ++ ,迭代器向后移动。
- rbegin(end)与rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动。
list capacity
函数声明 | 函数声明 接口说明 |
---|---|
empty | 检测list是否为空,是返回true,否则返回false |
size | 返回list中有效节点的个数 |
list element access
函数声明 | 接口说明 |
---|---|
front | 返回list的第一个节点中值的引用 |
back | 返回list的最后一个节点中值的引用 |
list modifiers
函数声明 | 接口说明 |
---|---|
push_front | 在list首元素前插入值为val的元素 |
pop_front | 删除list中第一个元素 |
push_back | 在list尾部插入值为val的元素 |
pop_back | 删除list中最后一个元素 |
insert | 在list position 位置中插入值为val的元素 |
erase | 删除list position位置的元素 |
swap | 交换两个list中的元素 |
clear | 清空list中的有效元素 |
list模拟实现
list节点类
template<class T>
struct ListNode
{
ListNode<T>* _next;
ListNode<T>* _prev;
T _data;
ListNode(const T& x = T())
:_next(nullptr)
,_prev(nullptr)
,_data(x)
{}
list迭代器类
template<class T, class Ref, class Ptr>
struct ListIterator
{
typedef ListNode<T> Node;
typedef ListIterator<T, Ref, Ptr> Self;
Node* _node;
ListIterator(Node* node)
:_node(node)
{}
Ref operator*()
{
return _node->_data;
}
Ptr operator->()
{
return &_node->_data;
}
Self& operator++()
{
_node = _node->_next;
return *this;
}
Self operator++(int)
{
Self tmp(*this);
_node = _node->_next;
return tmp;
}
Self& operator--()
{
_node = _node->_prev;
return *this;
}
Self operator--(int)
{
Self tmp(*this);
_node = _node->_prev;
return tmp;
}
bool operator!=(const Self& it)
{
return _node != it._node;
}
bool operator==(const Self& it)
{
return _node == it._node;
}
};
list类
template<class T>
class list
{
typedef ListNode<T> Node;
public:
typedef ListIterator<T, T&, T*> iterator;
typedef ListIterator<T, const T&, const T*> const_iterator;
iterator begin()
{
return _head->_next;
}
iterator end()
{
return _head;
}
const_iterator begin() const
{
return _head->_next;
}
const_iterator end() const
{
return _head;
}
void empty_init()
{
_head = new Node;
_head->_next = _head;
_head->_prev = _head;
_size = 0;
}
list()
{
empty_init();
}
// lt2(lt1)
list(const list<T>& lt)
{
empty_init();
for (auto& e : lt)
{
push_back(e);
}
}
// 需要析构,一般就需要自己写深拷贝
// 不需要析构,一般就不需要自己写深拷贝,默认浅拷贝就可以
void swap(list<T>& lt)
{
std::swap(_head, lt._head);
std::swap(_size, lt._size);
}
list<T>& operator=(list<T> lt)
{
swap(lt);
return *this;
}
void clear()
{
iterator it = begin();
while (it != end())
{
it = erase(it);
}
}
~list()
{
clear();
delete _head;
_head = nullptr;
}
void push_back(const T& x)
{
insert(end(), x);
}
void push_front(const T& x)
{
insert(begin(), x);
}
void pop_back()
{
erase(--end());
}
void pop_front()
{
erase(begin());
}
void insert(iterator pos, const T& val)
{
Node* cur = pos._node;
Node* newnode = new Node(val);
Node* prev = cur->_prev;
// prev newnode cur;
prev->_next = newnode;
newnode->_prev = prev;
newnode->_next = cur;
cur->_prev = newnode;
_size++;
}
iterator erase(iterator pos)
{
Node* cur = pos._node;
Node* prev = cur->_prev;
Node* next = cur->_next;
prev->_next = next;
next->_prev = prev;
delete cur;
_size--;
return iterator(next);
}
size_t size() const
{
return _size;
}
bool empty()
{
return _size == 0;
}
private:
Node* _head;
size_t _size;
};
list深度剖析
list迭代器失效
迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响。
void TestListIterator1()
{
int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
list<int> l(array, array+sizeof(array)/sizeof(array[0]));
auto it = l.begin();
while (it != l.end())
{
cout<<*it<<" ";
// erase()函数执行后,it所指向的节点已被删除,
//因此it无效,在下一次使用it时,必须先给其赋值
l.erase(it);
++it;
}
}
改正:
void TestListIterator()
{
int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
list<int> l(array, array+sizeof(array)/sizeof(array[0]));
auto it = l.begin();
while (it != l.end())
{
cout<<*it<<" ";
l.erase(it++); // it = l.erase(it);
}
}
分析:erase删除当前元素后返回下一个元素的迭代器,所以只需用it来接收erase的返回值即可。改正前没有接收erase的返回值,导致迭代器it指向的空间释放了,访问已经释放的空间导致报错。
erase(it++)是先存下it的副本,再让it++(此时未删除节点,迭代器还是有效的)再把副本给erase完成删除步骤。
list反向迭代器
通过前面例子知道,反向迭代器的++就是正向迭代器的–,反向迭代器的–就是正向迭代器的++,因此反向迭
代器的实现可以借助正向迭代器,即:反向迭代器内部可以包含一个正向迭代器,对正向迭代器的接口进行
包装即可。
template<class Iterator>
class ReverseListIterator
{
// 注意:此处typename的作用是明确告诉编译器,Ref是Iterator类中的类型,而不是静态成员变量
// 否则编译器编译时就不知道Ref是Iterator中的类型还是静态成员变量
// 因为静态成员变量也是按照 类名::静态成员变量名 的方式访问的
public:
typedef typename Iterator::Ref Ref;
typedef typename Iterator::Ptr Ptr;
typedef ReverseListIterator<Iterator> Self;
public:
//
// 构造
ReverseListIterator(Iterator it): _it(it){}
//
// 具有指针类似行为
Ref operator*(){
Iterator temp(_it);
--temp;
return *temp;
}
Ptr operator->(){ return &(operator*());}
//
// 迭代器支持移动
Self& operator++(){
--_it;
return *this;
}
Self operator++(int){
Self temp(*this);
--_it;
return temp;
}
Self& operator--(){
++_it;
return *this;
}
Self operator--(int)
{
Self temp(*this);
++_it;
return temp;
}
//
// 迭代器支持比较
bool operator!=(const Self& l)const{ return _it != l._it;}
bool operator==(const Self& l)const{ return _it != l._it;}
Iterator _it;
};
list与vector对比
vector与list都是STL中非常重要的序列式容器,由于两个容器的底层结构不同,导致其特性以及应用场景不
同,其主要不同如下:
vector | list | |
---|---|---|
底层结构 | 动态顺序表,一段连续空间 | 带头结点的双向循环链表 |
插入和删除 | 任意位置插入和删除效率低,需要搬移元素,时间复杂度为O(N),插入时有可能需要增容,增容:开辟新空间,拷贝元素,释放旧空间,导致效率更低 | 任意位置插入和删除效率高,不需要搬移元素,时间复杂度为O(1) |
空间利用率 | 底层为连续空间,不容易造成内存碎片,空间利用率高,缓存利用率高。 | 底层节点动态开辟,小节点容易造成内存碎片,空间利用率低,缓存利用率低。 |
迭代器 | 原生态指针 | 对原生态指针(节点指针)进行封装 |
迭代器失效 | 在插入元素时,要给所有的迭代器重新赋值,因为插入元素有可能会导致重新扩容,致使原来迭代器失效,删除时,当前迭代器需要重新赋值否则会失效。 | 插入元素不会导致迭代器失效,删除元素时,只会导致当前迭代器失效,其他迭代器不受影响。 |
使用场景 | 需要高效存储,支持随机访问,不关心插入删除效率 | 大量插入和删除操作,不关心随机访问 |