【Python使用】嘿马头条完整开发md笔记第3篇:数据库,1 新增【附代码文档】

嘿马头条项目从到完整开发笔记总结完整教程(附代码资料)主要内容讲述:课程简介,ToutiaoWeb虚拟机使用说明1 产品介绍,2 原型图与UI图,3 技术架构,4 开发,1 需求,2 注意事项。数据库,理解ORM1 简介,2 安装,3 数据库连接设置,4 模型类字段与选项,5 构建模型类映射。数据库,SQLAlchemy操作1 新增,2 查询,3 更新,4 删除,5 事务,1. 复制集与分布式。数据库,分布式ID1 方案选择,2 头条,1 理解索引,2 SQL查询优化,3 数据库优化。数据库,Redis1 Redis事务,2 Redis持久化,3 Redis高可用,4 Redis集群,5 用途,6 相关补充阅读。Git工用流,调试方法。OSS对象存储,七牛云存储。缓存,缓存架构缓存数据的类型,缓存数据的保存方式,有效期 TTL (Time to live),缓存淘汰 eviction。缓存,缓存问题1 缓存穿透,2 缓存雪崩,缓存设计,持久存储设计。APScheduler定时任务,定时修正统计数据1. 什么是RPC,2. 背景与用途,3. 概念说明,4. 优缺点,架构,使用方法。RPC,编写客户端。即时通讯,Socket.IO1 简介,2 Python服务器端开发,3 Python客户端。Elasticsearch,简介与原理概念,Elasticsearch 集群(cluster),索引,类型和映射。Elasticsearch,文档。单元测试,部署相关数据库性能,缓存雪崩,缓存编写。缓存模式缓存的架构,缓存数据,缓存数据的有效期和淘汰策略,淘汰策略,头条项目缓存数据的设计。

全套笔记资料代码移步: 前往gitee仓库查看

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~


全套教程部分目录:


部分文件图片:

数据库

  • 数据库设计

  • SQLAlchemy

  • 数据库理论

  • 分布式ID

  • Redis

SQLAlchemy操作

1 新增

user = User(mobile='15612345678', name='itcast')
db.session.add(user)
db.session.commit()
profile = Profile(id=user.id)
db.session.add(profile)
db.session.commit()

对于批量添加也可使用如下语法

db.session.add_all([user1, user2, user3])
db.session.commit()

2 查询

all()

查询所有,返回列表

User.query.all()
first()

查询第一个,返回对象

User.query.first()
get()

根据主键ID获取对象,若主键不存在返回None

User.query.get(2)
另一种查询方式
db.session.query(User).all()
db.session.query(User).first()
db.session.query(User).get(2)
filter_by

进行过虑

User.query.filter_by(mobile='13911111111').first()
User.query.filter_by(mobile='13911111111', id=1).first()  # and关系
filter

进行过虑

User.query.filter(User.mobile=='13911111111').first()
逻辑或
from sqlalchemy import or_
User.query.filter(or_(User.mobile=='13911111111', User.name.endswith('号'))).all()
逻辑与
from sqlalchemy import and_
User.query.filter(and_(User.name != '13911111111', User.mobile.startswith('185'))).all()
逻辑非
from sqlalchemy import not_
User.query.filter(not_(User.mobile == '13911111111')).all()
offset

偏移,起始位置

User.query.offset(2).all()
limit

获取限制数据

User.query.limit(3).all()
order_by

排序

User.query.order_by(User.id).all()  # 正序
User.query.order_by(User.id.desc()).all()  # 倒序
复合查询
User.query.filter(User.name.startswith('13')).order_by(User.id.desc()).offset(2).limit(5).all()
query = User.query.filter(User.name.startswith('13'))
query = query.order_by(User.id.desc())
query = query.offset(2).limit(5)
ret = query.all()
优化查询
user = User.query.filter_by(id=1).first()  # 查询所有字段
select user_id, mobile......

select * from   # 程序不要使用
select user_id, mobile,.... # 查询指定字段

from sqlalchemy.orm import load_only
User.query.options(load_only(User.name, User.mobile)).filter_by(id=1).first() # 查询特定字段
聚合查询
from sqlalchemy import func

db.session.query(Relation.user_id, func.count(Relation.target_user_id)).filter(Relation.relation == Relation.RELATION.FOLLOW).group_by(Relation.user_id).all()
关联查询
1. 使用ForeignKey
class User(db.Model):
    ...
    profile = db.relationship('UserProfile', uselist=False)
    followings = db.relationship('Relation')

class UserProfile(db.Model):
    id = db.Column('user_id', db.Integer, db.ForeignKey('user_basic.user_id'), primary_key=True,  doc='用户ID')
    ...

class Relation(db.Model):
    user_id = db.Column(db.Integer, db.ForeignKey('user_basic.user_id'), doc='用户ID')
    ...



# 测试   


user = User.query.get(1)
user.profile.gender
user.followings
2. 使用primaryjoin
class User(db.Model):
    ...

    profile = db.relationship('UserProfile', primaryjoin='User.id==foreign(UserProfile.id)', uselist=False)
    followings = db.relationship('Relation', primaryjoin='User.id==foreign(Relation.user_id)')



# 测试


user = User.query.get(1)
user.profile.gender
user.followings
3. 指定字段关联查询
class Relation(db.Model):
    ...
    target_user = db.relationship('User', primaryjoin='Relation.target_user_id==foreign(User.id)', uselist=False)

from sqlalchemy.orm import load_only, contains_eager

Relation.query.join(Relation.target_user).options(load_only(Relation.target_user_id), contains_eager(Relation.target_user).load_only(User.name)).all()

3 更新

  • 方式一
user = User.query.get(1)
  user.name = 'Python'
  db.session.add(user)
  db.session.commit()
  • 方式二
User.query.filter_by(id=1).update({'name':'python'})
  db.session.commit()

4 删除

  • 方式一
user = User.query.order_by(User.id.desc()).first()
  db.session.delete(user)
  db.session.commit()
  • 方式二
User.query.filter(User.mobile='18512345678').delete()
  db.session.commit()

5 事务

environ = {'wsgi.version':(1,0), 'wsgi.input': '', 'REQUEST_METHOD': 'GET', 'PATH_INFO': '/', 'SERVER_NAME': 'itcast server', 'wsgi.url_scheme': 'http', 'SERVER_PORT': '80'}

with app.request_context(environ):
    try:
        user = User(mobile='18911111111', name='itheima')
        db.session.add(user)
        db.session.flush() # 将db.session记录的sql传到数据库中执行
        profile = UserProfile(id=user.id)
        db.session.add(profile)
        db.session.commit()
    except:
        db.session.rollback()

数据库

  • 数据库设计

  • SQLAlchemy

  • 数据库理论

  • 分布式ID

  • Redis

数据库理论

1. 复制集与分布式

  • 复制集(Replication

  • 数据库中数据相同,起到备份作用

  • 高可用 High Available HA

  • 分布式(Distribution

  • 数据库中数据不同,共同组成完整的数据集合

  • 通常每个节点被称为一个分片(shard)
  • 高吞吐 High Throughput

  • 复制集与分布式可以单独使用,也可以组合使用(即每个分片都组建一个复制集)

  • 关于主(Master)从(Slave)

  • 这个概念是从使用的角度来阐述问题的

  • 主节点 -> 表示程序在这个节点上最先更新数据
  • 从节点 -> 表示这个节点的数据是要通过复制主节点而来
  • 复制集 可选 主从、主主、主主从从
  • 分布式 每个分片都是主,组合使用复制集的时候,复制集的是从

2. MySQL

1) 主从复制

复制分成三步:

  1. master将改变记录到二进制日志(binary log)中(这些记录叫做二进制日志事件,binary log events);
  2. slave将master的binary log events拷贝到它的中继日志(relay log);
  3. slave重做中继日志中的事件,将改变反映它自己的数据。

下图描述了这一过程:

主从复制

该过程的第一部分就是master记录二进制日志。在每个事务更新数据完成之前,master在二日志记录这些改变。MySQL将事务串行的写入二进制日志,即使事务中的语句都是交叉执行的。在事件写入二进制日志完成后,master通知存储引擎提交事务。

下一步就是slave将master的binary log拷贝到它自己的中继日志。首先,slave开始一个工作线程——I/O线程。I/O线程在master上打开一个普通的连接,然后开始binlog dump process。Binlog dump process从master的二进制日志中读取事件,如果已经跟上master,它会睡眠并等待master产生新的事件。I/O线程将这些事件写入中继日志。

SQL slave thread处理该过程的最后一步。SQL线程从中继日志读取事件,更新slave的数据,使其与master中的数据一致。只要该线程与I/O线程保持一致,中继日志通常会位于OS的缓存中,所以中继日志的开销很小。

此外,在master中也有一个工作线程:和其它MySQL的连接一样,slave在master中打开一个连接也会使得master开始一个线程。

利用主从在达到高可用的同时,也可以通过读写分离提供吞吐量。

思考:读写分离对事务是否有影响?

对于写操作包括开启事务和提交或回滚要在一台机器上执行,分散到多台master执行后数据库原生的单机事务就失效了。

对于事务中同时包含读写操作,与事务隔离级别设置有关,如果事务隔离级别为read-uncommitted 或者 read-committed,读写分离没影响,如果隔离级别为repeatable-read、serializable,读写分离就有影响,因为在slave上会看到新数据,而正在事务中的master看不到新数据。

2)分库分表(sharding)
分库分表前的问题

任何问题都是太大或者太小的问题,我们这里面对的数据量太大的问题。

  • 用户请求量太大

因为单服务器TPS,内存,IO都是有限的。 解决方法:分散请求到多个服务器上; 其实用户请求和执行一个sql查询是本质是一样的,都是请求一个资源,只是用户请求还会经过网关,路由,http服务器等。

  • 单库太大

单个数据库处理能力有限;单库所在服务器上磁盘空间不足;单库上操作的IO瓶颈 解决方法:切分成更多更小的库

  • 单表太大

CRUD都成问题;索引膨胀,查询超时 解决方法:切分成多个数据集更小的表。

分库分表的方式方法

一般就是垂直切分和水平切分,这是一种结果集描述的切分方式,是物理空间上的切分。 我们从面临的问题,开始解决,阐述: 首先是用户请求量太大,我们就堆机器搞定(这不是本文重点)。

然后是单个库太大,这时我们要看是因为表多而导致数据多,还是因为单张表里面的数据多。 如果是因为表多而数据多,使用垂直切分,根据业务切分成不同的库。

如果是因为单张表的数据量太大,这时要用水平切分,即把表的数据按某种规则切分成多张表,甚至多个库上的多张表。 分库分表的顺序应该是先垂直分,后水平分。 因为垂直分更简单,更符合我们处理现实世界问题的方式。

垂直拆分
  1. 垂直分表

也就是“大表拆小表”,基于列字段进行的。一般是表中的字段较多,将不常用的, 数据较大,长度较长(比如text类型字段)的拆分到“扩展表“。 一般是针对那种几百列的大表,也避免查询时,数据量太大造成的“跨页”问题。

  1. 垂直分库

垂直分库针对的是一个系统中的不同业务进行拆分,比如用户User一个库,商品Producet一个库,订单Order一个库。 切分后,要放在多个服务器上,而不是一个服务器上。为什么? 我们想象一下,一个购物网站对外提供服务,会有用户,商品,订单等的CRUD。没拆分之前, 全部都是落到单一的库上的,这会让数据库的单库处理能力成为瓶颈。按垂直分库后,如果还是放在一个数据库服务器上, 随着用户量增大,这会让单个数据库的处理能力成为瓶颈,还有单个服务器的磁盘空间,内存,tps等非常吃紧。 所以我们要拆分到多个服务器上,这样上面的问题都解决了,以后也不会面对单机资源问题。

数据库业务层面的拆分,和服务的“治理”,“降级”机制类似,也能对不同业务的数据分别的进行管理,维护,监控,扩展等。 数据库往往最容易成为应用系统的瓶颈,而数据库本身属于“有状态”的,相对于Web和应用服务器来讲,是比较难实现“横向扩展”的。 数据库的连接资源比较宝贵且单机处理能力也有限,在高并发场景下,垂直分库一定程度上能够突破IO、连接数及单机硬件资源的瓶颈。

水平拆分
  1. 水平分表

针对数据量巨大的单张表(比如订单表),按照某种规则(RANGE,HASH取模等),切分到多张表里面去。 但是这些表还是在同一个库中,所以库级别的数据库操作还是有IO瓶颈。不建议采用。

  1. 水平分库分表

将单张表的数据切分到多个服务器上去,每个服务器具有相应的库与表,只是表中数据集合不同。 水平分库分表能够有效的缓解单机和单库的性能瓶颈和压力,突破IO、连接数、硬件资源等的瓶颈。

  1. 水平分库分表切分规则

    1. RANGE

从0到10000一个表,10001到20000一个表;

  1. HASH取模 离散化

一个商场系统,一般都是将用户,订单作为主表,然后将和它们相关的作为附表,这样不会造成跨库事务之类的问题。 取用户id,然后hash取模,分配到不同的数据库上。

  1. 地理区域

比如按照华东,华南,华北这样来区分业务,七牛云应该就是如此。

  1. 时间

按照时间切分,就是将6个月前,甚至一年前的数据切出去放到另外的一张表,因为随着时间流逝,这些表的数据 被查询的概率变小,所以没必要和“热数据”放在一起,这个也是“冷热数据分离”。

分库分表后面临的问题
  • 事务支持

分库分表后,就成了分布式事务了。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。

  • 多库结果集合并(group by,order by)

  • 跨库join

分库分表后表之间的关联操作将受到限制,我们无法join位于不同分库的表,也无法join分表粒度不同的表, 结果原本一次查询能够完成的业务,可能需要多次查询才能完成。 粗略的解决方法: 全局表:基础数据,所有库都拷贝一份。 字段冗余:这样有些字段就不用join去查询了。 系统层组装:分别查询出所有,然后组装起来,较复杂。

分库分表方案产品

目前市面上的分库分表中间件相对较多,其中基于方式的有MySQL Proxy和Amoeba, 基于Hibernate框架的是Hibernate Shards,基于jdbc的有当当sharding-jdbc, 基于mybatis的类似maven插件式的有蘑菇街的蘑菇街TSharding, 通过重写spring的ibatis template类的Cobar Client。

还有一些大公司的开源产品:

分库分表

3 头条项目应用

  • 主从

  • 垂直分表

CREATE TABLE `user_basic` (
  `user_id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '用户ID',
  `account` varchar(20) COMMENT '账号',
  `email` varchar(20) COMMENT '邮箱',
  `status` tinyint(1) NOT NULL DEFAULT '1' COMMENT '状态,是否可用,0-不可用,1-可用',
  `mobile` char(11) NOT NULL COMMENT '手机号',
  `password` varchar(93) NULL COMMENT '密码',
  `user_name` varchar(32) NOT NULL COMMENT '昵称',
  `profile_photo` varchar(128) NULL COMMENT '头像',
  `last_login` datetime NULL COMMENT '最后登录时间',
  `is_media` tinyint(1) NOT NULL DEFAULT '0' COMMENT '是否是自媒体,0-不是,1-是',
  `is_verified` tinyint(1) NOT NULL DEFAULT '0' COMMENT '是否实名认证,0-不是,1-是',
  `introduction` varchar(50) NULL COMMENT '简介',
  `certificate` varchar(30) NULL COMMENT '认证',
  `article_count` int(11) unsigned NOT NULL DEFAULT '0' COMMENT '发文章数',
  `following_count` int(11) unsigned NOT NULL DEFAULT '0' COMMENT '关注的人数',
  `fans_count` int(11) unsigned NOT NULL DEFAULT '0' COMMENT '被关注的人数',
  `like_count` int(11) unsigned NOT NULL DEFAULT '0' COMMENT '累计点赞人数',
  `read_count` int(11) unsigned NOT NULL DEFAULT '0' COMMENT '累计阅读人数',
  PRIMARY KEY (`user_id`),
  UNIQUE KEY `mobile` (`mobile`),
  UNIQUE KEY `user_name` (`user_name`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='用户基本信息表';

CREATE TABLE `user_profile` (
  `user_id` bigint(20) unsigned NOT NULL COMMENT '用户ID',
  `gender` tinyint(1) NOT NULL DEFAULT '0' COMMENT '性别,0-男,1-女',
  `birthday` date NULL COMMENT '生日',
  `real_name` varchar(32) NULL COMMENT '真实姓名',
  `id_number` varchar(20) NULL COMMENT '身份证号',
  `id_card_front` varchar(128) NULL COMMENT '身份证正面',
  `id_card_back` varchar(128) NULL COMMENT '身份证背面',
  `id_card_handheld` varchar(128) NULL COMMENT '手持身份证',
  `create_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `update_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
  `register_media_time` datetime NULL COMMENT '注册自媒体时间',
  `area` varchar(20) COMMENT '地区',
  `company` varchar(20) COMMENT '公司',
  `career` varchar(20) COMMENT '职业',
  PRIMARY KEY (`user_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='用户资料表';
CREATE TABLE `news_article_basic` (
  `article_id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '文章ID',
  `user_id` bigint(20) unsigned NOT NULL COMMENT '用户ID',
  `channel_id` int(11) unsigned NOT NULL COMMENT '频道ID',
  `title` varchar(128) NOT NULL COMMENT '标题',
  `cover` json NOT NULL COMMENT '封面',
  `is_advertising` tinyint(1) NOT NULL DEFAULT '0' COMMENT '是否投放广告,0-不投放,1-投放',
  `create_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
  `update_time` datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '更新时间',
  `status` tinyint(1) NOT NULL DEFAULT '0' COMMENT '贴文状态,0-草稿,1-待审核,2-审核通过,3-审核失败,4-已删除',
  `reviewer_id` int(11) NULL COMMENT '审核人员ID',
  `review_time` datetime NULL COMMENT '审核时间',
  `delete_time` datetime NULL COMMENT '删除时间',
  `reject_reason` varchar(200) COMMENT '驳回原因',
  `comment_count` int(11) unsigned NOT NULL DEFAULT '0' COMMENT '累计评论数',
  `allow_comment` tinyint(1) NOT NULL DEFAULT '1' COMMENT '是否允许评论,0-不允许,1-允许',
  PRIMARY KEY (`article_id`),
  KEY `user_id` (`user_id`),
  KEY `article_status` (`status`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='文章基本信息表';

CREATE TABLE `news_article_content` (
  `article_id` bigint(20) unsigned NOT NULL COMMENT '文章ID',
  `content` longtext NOT NULL COMMENT '文章内容',
  PRIMARY KEY (`article_id`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8 COMMENT='文章内容表';

未完待续, 同学们请等待下一期

全套笔记资料代码移步: 前往gitee仓库查看

感兴趣的小伙伴可以自取哦,欢迎大家点赞转发~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/507434.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

电商新手选品易犯6大通病,85%的人都踩过雷!

电商选品是一个复杂而关键的过程,需要综合考虑多种因素,尤其对于刚刚涉猎电商行业的新手来更有难度,许多电商新手在选品过程中都会犯一些通病,以下是一些常见的电商选品通病以及调整建议,希望对大家有所帮助&#xff1…

《第一行代码 Android 第三版》 天气预报APP SunnyWeather——交作业

跟着书本手敲一遍kotlin项目SunnyWeather,MVVM架构: 没啥难度,就是熟悉kotlin... github链接:SunnyWeather/app at master xda1212/SunnyWeather GitHub

Vivado Lab Edition

Vivado Lab Edition 是完整版 Vivado Design Suite 的独立安装版本 , 包含在生成比特流后对赛灵思 FPGA 进行编程和 调试所需的所有功能。通常适用于在如下实验室环境内进行编程和调试: 实验室环境中的机器所含磁盘空间、内存和连 接资源较少。Vivad…

【环境搭建】(四)ubuntu22.04系统安装Opencv4.8.0+Opencv-contrib4.8.0

一个愿意伫立在巨人肩膀上的农民...... 一、安装下载所需工具 1.打开终端,输入以下命令来更新软件源: sudo apt-get update 2.安装wget: sudo apt-get install wget 3.下载opencv和opencv-contrib包: wget -O opencv-4.8.0.…

备忘录软件哪款可以加密?备忘录app怎么加密?

在快节奏的现代生活中,备忘录软件已成为我们不可或缺的助手。它不仅能方便我们随时记录任务事项,捕捉生活中的灵感,还便于我们随时修改和查看记录内容,实用性极高。然而,随着记录内容的增多,数据安全性问题…

【自动化测试】 环境部署和元素定位

写在前面 勤奋跟吃苦不一样,假如你对工作,生活不满意。就要跳出圈子,接触其它人或事物,提升自己。从而换个工作,或者换了心态看待问题。而不是,吃苦的加班逼着自己去内卷,卷来卷去觉得吃苦受累&…

Leetcode 309. 买卖股票的最佳时机含冷冻期

心路历程: 这道题的建模和股票问题一样,只不过需要在状态上增加一个处于冻结期; 状态:1第i天;2第i天持有股票的状态(持有,不持有被冻结,不持有未被冻结) 动作&#xff1…

基于SpringBoot餐饮美食分享平台的设计与实现+毕业论文+毕业答辩PPT+搭建资料

系列文章目录 本系统的用户可分为用户和管理员二个用户角色组成。管理员可以管理系统内所有功能,主要有系统首页、信息展示、用户信息管理、菜谱信息管理、笔记信息管理、美食信息管理、修改密码、退出登录管理、系统管理等功能;用户登录系统可以对个人…

实体机双系统安装

实体机双系统安装 第一步:下载openKylin镜像 前往官网下载x86_64的镜像(https://www.openkylin.top/downloads/628-cn.html) tips:下载完镜像文件后,请先检查文件MD5值是否和官网上的一致,如果不一致请重…

如何给图片添加水印?

如何给图片添加水印?在现代职场中,图片的使用已经成为了日常工作的一部分,而给图片添加水印也逐渐成为了一种常见的需求。无论是在设计、广告、营销还是其他领域,给工作中的图片加水印都有其重要性和实用性。工作中给图片加水印的…

系统分析师-软件的知识产权保护与标准化

文章目录 前言一、知识产权保护范围与对象二、保护期限三、知识产权人确定四、侵权判定五、标准化标准的分类标准的编号 前言 知识产权也称为“智力成果权”、“智慧财产权”,它是人类通过创造性的智力劳动而获得的一项权利。根据我国民法通则的规定,知识…

兑换码生成算法

兑换码生成算法 兑换码生成算法1.兑换码的需求2.算法分析2.重兑校验算法3.防刷校验算法 3.算法实现 兑换码生成算法 兑换码生成通常涉及在特定场景下为用户提供特定产品或服务的权益或礼品,典型的应用场景包括优惠券、礼品卡、会员权益等。 1.兑换码的需求 要求如…

IPv4地址

IP v4 由32位二进制构成、可以用点分十进制表示。 例如:192.168.1.1 11000000101010000000000100000001 由网络位和主机位组成。为了区分网络位和主机位,需要用子网掩码,子网掩码也是由32位二进制构成,连续的1对应网络位&#…

黑马鸿蒙笔记 4

目录 17.ArkUI-状态管理-Observed和ObjectLink 18.ArkUI-页面路由 19.ArkUI-属性动画和显式动画 20.ArkUI-组件转场动画 17.ArkUI-状态管理-Observed和ObjectLink 这个task[],找到它的定义 在数据类型上加Observed 要把这一段单独抽取出来,才可以加ObjectLink&a…

【数据结构】——二叉树堆的实现

大佬们点点关注,点点赞?! 前言 在上篇博客中我们已经介绍了树和二叉树的相关概念,相信大家都已经清楚了树和二叉树的基本思想,下面我们就来着重看看二叉树堆的实现。 在看堆的实现,我们先看看二叉树的顺…

在视频号上开店怎么样?聊下我做视频号店铺后的感受

我是王路飞。 说到创业找项目,电商无疑是现在最受欢迎的行业了。 毕竟现在的直播带货有多火相信大家也都明白,但是直播带货的门槛要远比开一个店铺的门槛高很多。 所以,很多普通人想分到直播带货这波红利的,都选择了开一个店铺…

什么是智慧公厕?智慧城市下的智慧公厕有什么功能和特点?

随着科技的不断进步和城市化的加快发展,智慧城市已经成为我们生活中的一部分。而在智慧城市的建设中,智慧公厕作为城市基础设施的重要组成部分发挥着重要的作用。那么什么是智慧公厕?智慧公厕是针对公共厕所的日常使用、运行、管理、运营等过…

如何在CentOS7部署Wiki.js知识库并实现分享好友公网远程使用【内网穿透】

文章目录 1. 安装Docker2. 获取Wiki.js镜像3. 本地服务器打开Wiki.js并添加知识库内容4. 实现公网访问Wiki.js5. 固定Wiki.js公网地址 不管是在企业中还是在自己的个人知识整理上,我们都需要通过某种方式来有条理的组织相应的知识架构,那么一个好的知识整…

javaWeb项目-高校实验室管理系统功能介绍

项目关键技术 开发工具:IDEA 、Eclipse 编程语言: Java 数据库: MySQL5.7 框架:ssm、Springboot 前端:Vue、ElementUI 关键技术:springboot、SSM、vue、MYSQL、MAVEN 数据库工具:Navicat、SQLyog 1、JSP技术 JSP(Jav…

【docker】Dockerfile自定义镜像

📝个人主页:五敷有你 🔥系列专栏:中间件 ⛺️稳中求进,晒太阳 1.Dockerfile自定义镜像 常见的镜像在DockerHub就能找到,但是我们自己写的项目就必须自己构建镜像了。 而要自定义镜像,就…