011——人体感应模块驱动开发(SR501)

目录

一、 模块简介

二、 工作原理

三、 软件及验证


一、 模块简介

        人体都有恒定的体温,一般在 37 度,所以会发出特定波长 10uM 左右的红外线,被动式红外探头就是靠探测人体发射的 10uM 左右的红外线而进行工作的。
        人体发射的 10uM 左右的红外线通过菲泥尔滤光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。
        人体红外模块是一种能够检测人或动物发射的红外线而输出电信号的传感器。广泛应用于各种自动化控制装置中。比如常见的楼道自动开关、防盗报警等。如果有人在量程内运动, DO 引脚将会输出有效信号。市面上人体红外模块有很多,但其外形和原理都差不多,去年做STM32的项目时用过不少如下是一个典型的人体红外模式原理图:
 

实物长这个样子

        这个罩子是为了扩大检测范围的

之前用不是很灵敏这次试试在linux环境下的驱动程序灵敏度怎么样。

二、 工作原理

        通过跳线来设置是否可以重复触发,默认为 L。其中 L 表示不可重复, H 表示可重复。含义如下:
① 不可重复触发方式:
        感应到人体并输出高电平后,延时时间一结束,输出将自动从高电平变为低电平。
② 重复触发方式:
        感应到人体后输出高电平后,在延时时间段内,如果有人体在其感应范围内活动,其输出将一直保持高电平,直到人离开后才延时将高电平变为低电平(感应模块检测到人体的每一次活动后会自动顺延一个延时时间段,并且以最后一次活动的时间为延时时间的起始点)。可以通过电位器实现封锁时间和检测距离的调节:
① 调节检测距离:
        即有效距离的远近。调节距离电位器顺时针旋转,感应距离增大(约 7 米);反之,感应距离减小(约 3 米)。
② 封锁时间:
        感应模块在每一次感应输出后(高电平变为低电平),可以紧跟着设置一个封锁时间,在此时间段内感应器不接收任何感应信号。此功能可以实现(感应输出时间和封锁时间)两者的间隔工作,可应用于间隔探测产品;同时此功能可有效抑制负载切换过程中产生的各种干扰。调节延时电位器顺时针旋转,感应延时加长(约 300S),反之,感应延时减短(约 0.5S)。

老师很贴心做了防呆设计

补充信息: 

        人进入其感应范围则输出高电平,人离开感应范围则自动延时关闭高电平,输出低电平

工作电压:DC4.5V~20V
静态电流:<50uA
电平输出:高3.3V/低0V0
延时时间:8s~200s(可调)
封锁时间:2.5s
触发方式:可重复触发/不可重复触发(通过跳线帽选择)感应角度:<100度锥角
电路板外形尺寸:32mm*24mm
工作温度:-15~+70°℃
感应透镜尺寸:直径23mm
小于120度锥角,7米以内

VCC:电源正极
GND:电源负极
OUT:信号输出
隐藏接口
RT:温度补偿接口(可接热敏电阻,在夏天当环境温度升高至30~32°℃,探测距离稍变短,温度补
偿可作一定的性能补偿。)
RL(CDS):光敏控制接口(可接光敏电阻,白天或者光线较强时控制模块不感应)

三、 软件及验证

        一番紧张刺激的配置网络后给大家推荐个新工具

        很好用谁用谁知道。

这样一个终端可以控制所有的机器。

 

模块有点不灵敏呢。

我们接线用了拓展资源板

  • GPIO4 ==> 第3组 ===> 起始编号 = 3*32 = 96

  • GPIO4_19的编号:96+19=115

#include <linux/module.h>
#include <linux/poll.h>

#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
#include <linux/gpio/consumer.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/of_irq.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/slab.h>
#include <linux/fcntl.h>
#include <linux/timer.h>

struct gpio_desc{
	int gpio;
	int irq;
    char *name;
    int key;
	struct timer_list key_timer;
} ;

static struct gpio_desc gpios[2] = {
    {115, 0, "sr501", },
};

/* 主设备号                                                                 */
static int major = 0;
static struct class *gpio_class;

/* 环形缓冲区 */
#define BUF_LEN 128
static int g_keys[BUF_LEN];
static int r, w;

struct fasync_struct *button_fasync;

#define NEXT_POS(x) ((x+1) % BUF_LEN)

static int is_key_buf_empty(void)
{
	return (r == w);
}

static int is_key_buf_full(void)
{
	return (r == NEXT_POS(w));
}

static void put_key(int key)
{
	if (!is_key_buf_full())
	{
		g_keys[w] = key;
		w = NEXT_POS(w);
	}
}

static int get_key(void)
{
	int key = 0;
	if (!is_key_buf_empty())
	{
		key = g_keys[r];
		r = NEXT_POS(r);
	}
	return key;
}


static DECLARE_WAIT_QUEUE_HEAD(gpio_wait);


/* 实现对应的open/read/write等函数,填入file_operations结构体                   */
static ssize_t gpio_drv_read (struct file *file, char __user *buf, size_t size, loff_t *offset)
{
	//printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
	int err;
	int key;

	if (is_key_buf_empty() && (file->f_flags & O_NONBLOCK))
		return -EAGAIN;
	
	wait_event_interruptible(gpio_wait, !is_key_buf_empty());
	key = get_key();
	err = copy_to_user(buf, &key, 4);
	
	return 4;
}


static unsigned int gpio_drv_poll(struct file *fp, poll_table * wait)
{
	//printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
	poll_wait(fp, &gpio_wait, wait);
	return is_key_buf_empty() ? 0 : POLLIN | POLLRDNORM;
}

static int gpio_drv_fasync(int fd, struct file *file, int on)
{
	if (fasync_helper(fd, file, on, &button_fasync) >= 0)
		return 0;
	else
		return -EIO;
}


/* 定义自己的file_operations结构体                                              */
static struct file_operations gpio_key_drv = {
	.owner	 = THIS_MODULE,
	.read    = gpio_drv_read,
	.poll    = gpio_drv_poll,
	.fasync  = gpio_drv_fasync,
};


static irqreturn_t gpio_key_isr(int irq, void *dev_id)
{
	struct gpio_desc *gpio_desc = dev_id;
	int val;
	int key;

	printk("gpio_key_isr key %d irq happened\n", gpio_desc->gpio);

	val = gpio_get_value(gpio_desc->gpio);

	//printk("key_timer_expire key %d %d\n", gpio_desc->gpio, val);
	key = (gpio_desc->key) | (val<<8);
	put_key(key);
	wake_up_interruptible(&gpio_wait);
	kill_fasync(&button_fasync, SIGIO, POLL_IN);

	return IRQ_HANDLED;
}


/* 在入口函数 */
static int __init gpio_drv_init(void)
{
    int err;
    int i;
    int count = sizeof(gpios)/sizeof(gpios[0]);
    
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
	
	for (i = 0; i < count; i++)
	{		
		gpios[i].irq  = gpio_to_irq(gpios[i].gpio);

		err = request_irq(gpios[i].irq, gpio_key_isr, IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING, gpios[i].name, &gpios[i]);
	}

	/* 注册file_operations 	*/
	major = register_chrdev(0, "100ask_gpio_key", &gpio_key_drv);  /* /dev/gpio_desc */

	gpio_class = class_create(THIS_MODULE, "100ask_gpio_key_class");
	if (IS_ERR(gpio_class)) {
		printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);
		unregister_chrdev(major, "100ask_gpio_key");
		return PTR_ERR(gpio_class);
	}

	device_create(gpio_class, NULL, MKDEV(major, 0), NULL, "sr501"); /* /dev/sr501 */
	
	return err;
}

/* 有入口函数就应该有出口函数:卸载驱动程序时,就会去调用这个出口函数
 */
static void __exit gpio_drv_exit(void)
{
    int i;
    int count = sizeof(gpios)/sizeof(gpios[0]);
    
	printk("%s %s line %d\n", __FILE__, __FUNCTION__, __LINE__);

	device_destroy(gpio_class, MKDEV(major, 0));
	class_destroy(gpio_class);
	unregister_chrdev(major, "100ask_gpio_key");

	for (i = 0; i < count; i++)
	{
		free_irq(gpios[i].irq, &gpios[i]);
	}
}


/* 7. 其他完善:提供设备信息,自动创建设备节点                                     */

module_init(gpio_drv_init);
module_exit(gpio_drv_exit);

MODULE_LICENSE("GPL");



#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <poll.h>
#include <signal.h>

static int fd;

/*
 * ./button_test /dev/sr501
 *
 */
int main(int argc, char **argv)
{
	int val;
	struct pollfd fds[1];
	int timeout_ms = 5000;
	int ret;
	int	flags;

	int i;
	
	/* 1. 判断参数 */
	if (argc != 2) 
	{
		printf("Usage: %s <dev>\n", argv[0]);
		return -1;
	}


	/* 2. 打开文件 */
	fd = open(argv[1], O_RDWR);
	if (fd == -1)
	{
		printf("can not open file %s\n", argv[1]);
		return -1;
	}

	while (1) 
	{
		if (read(fd, &val, 1) > 0)
		{
			if (val  == 0x100)
			{
				printf("get button: %#x ,有人\n", val);
			}
			else
			{
				printf("get button: %#x ,无人\n", val);
			}
		}
		else
			printf("get button: -1\n");
	}


	close(fd);
	
	return 0;
}


        这个传感器给的高电平的值居然是100不是1,不对不是传感器的锅,可能是韦东山老师驱动的bug,应用层我做了对应修改,这几天把驱动都捋一下然后我集中改一下这些bug然后对项目做适配。站在巨人的肩膀上就好哈哈。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/503463.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

<TensorFlow学习使用P1>——《TensorFlow教程》

一、TensorFlow概述 前言&#xff1a; 本文中一些TensorFlow综合案例的代码逻辑一般正常&#xff0c;在本地均可运行。如有代码复现运行失败&#xff0c;原因如下&#xff1a; &#xff08;1&#xff09;运行环境配置可能有误。 &#xff08;2&#xff09;由于一些数据集存储空…

docker-compose安装jenkins

1、环境准备&#xff1a;准备安装好docker的服务器一台 2、在服务器上创建一个目录用于安装Jenkins mkdir jenkins3、下载好要挂载的&#xff1a;maven、jkd&#xff1b;并将下载好的tar.gz包上传至服务器待安装目录中并解压 tar -xzvf tar -xzvf apache-maven-3.9.6-bin.tar…

连接Redis不支持集群错误,ERR This instance has cluster support disabled,解决方案

1. 问题背景 调整redis的配置后&#xff0c;启动程序时&#xff0c; 会报如下错误&#xff1a; [redis://172.16.0.8xxx]: ERR This instance has cluster support disabledSuppressed: io.lettuce.core.RedisCommandExecutionException: ERR This instance has cluster supp…

day01-SpringCloud01(Eureka、Ribbon、Nacos)

视频地址: SpringCloudRabbitMQDockerRedis搜索分布式&#xff0c;系统详解springcloud微服务技术栈课程|黑马程序员Java微服务 学习资料地址: 百度网盘 提取码&#xff1a;1234 1. 认识微服务 1.1.单体架构 单体架构&#xff1a;将业务的所有功能集中在一个项目中开发&#x…

应急响应靶机训练-Linux2题解

前言 接上文&#xff0c;应急响应靶机训练Linux2 靶机地址&#xff1a;应急响应靶机-Linux(2) 题解 登录虚拟机&#xff1a; 修改面板密码 提交攻击者IP 答案&#xff1a;192.168.20.1 查看宝塔日志即可 用的net直接是网关 提交攻击者修改的管理员密码(明文) 答案&…

搜索与图论——Kruskal算法求最小生成树

kruskal算法相比prim算法思路简单&#xff0c;不用处理边界问题&#xff0c;不用堆优化&#xff0c;所以一般稀疏图都用Kruskal。 Kruskal算法时间复杂度O(mlogm) 每条边存结构体里&#xff0c;排序需要在结构体里重载小于号 判断a&#xff0c;b点是否连通以及将点假如集合中…

C# 微软官方学习文档

链接&#xff1a;https://learn.microsoft.com/zh-cn/dotnet/csharp/ 在C#的学习过程中&#xff0c;我们可以参考微软官方的学习文档。它是一个免费的学习平台&#xff0c;提供了丰富的C#学习路径和教程&#xff08;如下图&#xff09;&#xff0c;对我们入门到高级应用开发都…

2024年京东云主机租用价格_京东云服务器优惠价格表

2024年京东云服务器优惠价格表&#xff0c;轻量云主机优惠价格5.8元1个月、轻量云主机2C2G3M价格50元一年、196元三年&#xff0c;2C4G5M轻量云主机165元一年&#xff0c;4核8G5M云主机880元一年&#xff0c;游戏联机服务器4C16G配置26元1个月、4C32G价格65元1个月、8核32G费用…

图论基础(python蓝桥杯)

图的基本概念 图的种类 怎么存放图呢&#xff1f; 优化 DFS 不是最快/最好的路&#xff0c;但是能找到一条连通的道路。&#xff08;判断两点之间是不是连通的&#xff09; 蓝桥3891 import os import sys sys.setrecursionlimit(100000) # 请在此输入您的代码 n, m map(int,…

c++----list模拟实现

目录 1. list的基本介绍 2. list的基本使用 2.1 list的构造 用法示例 2.2 list迭代器 用法示例 2.3. list容量&#xff08;capacity&#xff09;与访问&#xff08;access) 用法示例 2.4 list modifiers 用法示例 2.5 list的迭代器失效 3.list的模拟实现 3.1…

sqli第24关二次注入

注入点 # Validating the user input........$username $_SESSION["username"];$curr_pass mysql_real_escape_string($_POST[current_password]);$pass mysql_real_escape_string($_POST[password]);$re_pass mysql_real_escape_string($_POST[re_password]);if($p…

高档次定制线缆工厂-精工电联:智能化生产如何提升线缆品质

在百年未有之大变局的当下&#xff0c;科技发展日新月异的今天&#xff0c;智能化生产已经成为各行各业追求高效、高品质的重要手段。作为线缆行业的领先者&#xff0c;精工电联始终站在行业前沿&#xff0c;致力于通过智能化生产提升线缆品质&#xff0c;为客户创造更多、更有…

SpringMVC常见面试题

1&#xff1a;Spring mvc执行流程 回答&#xff1a; 版本1&#xff1a;视图版本&#xff0c;jsp 用户发送出请求到前端控制器DispatcherServletDispatcherServlet收到请求调用HandlerMapping(处理映射器)HandlerMapping找到具体的处理器&#xff0c;生成处理器对象及处理器拦…

ctfshow web入门 XXE

XXE基础知识 XXE&#xff08;XML External Entity&#xff09;攻击是一种针对XML处理漏洞的网络安全攻击手段。攻击者利用应用程序在解析XML输入时的漏洞&#xff0c;构造恶意的XML数据&#xff0c;进而实现各种恶意目的。 所以要学习xxe就需要了解xml xml相关&#xff1a; …

【应用层协议原理】

文章目录 第二章 应用层2.1 应用层协议原理2.1.1 网络应用的体系结构2.1.2 客户-服务器&#xff08;C/S&#xff09;体系结构2.1.3 对等体&#xff08;P2P&#xff09;体系结构2.2.4 C/S和P2P体系结构的混合体2.2.5 进程通信问题1&#xff1a;对进程进行编址&#xff08;addres…

YOLOv5改进系列:升级版ResNet的新主干网络DenseNet

一、论文理论 论文地址&#xff1a;Densely Connected Convolutional Networks 1.理论思想 DenseNet最大化前后层信息交流&#xff0c;通过建立前面所有层与后面层的密集连接&#xff0c;实现了特征在通道维度上的复用&#xff0c;不但减缓了梯度消失的现象&#xff0c;也使其…

蓝桥杯刷题day12——元素交换【算法赛】

一、题目描述 给定个大小为2N的二进制数组A&#xff0c;其中包含N个0和N个1。 现在&#xff0c;你可以交换数组中的任意两个元素。请你计算&#xff0c;至少需要多少次交换操作&#xff0c;才能保证数组中不存在连续的0或1. 输入格式 第行包含一个整数N(1<N≤10^5),表示数…

【微服务】OpenFeign+Sentinel集中处理远程调用异常

文章目录 1.微服务基本环境调整1.对10004模块的application.yml调整2.启动nacos以及一个消费者两个提供者3.测试1.输入http://localhost:8848/nacos/index.html 来查看注册情况2.浏览器访问 http://localhost:81/member/nacos/consumer/get/13.结果 2.使用OpenFeign实现微服务模…

【echart】数据可视化

什么是数据可视化&#xff1f; 数据可视化主要目的:借助于图形化手段&#xff0c;清晰有效地传达与沟通信息。 数据可视化可以把数据从冰冷的数字转换成图形&#xff0c;揭示蕴含在数据中的规律和道理。 如何绘制&#xff1f; echarts 图表的绘制&#xff0c;大体分为三步:…

使用1panel部署Ollama WebUI(dcoekr版)浅谈

文章目录 说明配置镜像加速Ollama WebUI容器部署Ollama WebUI使用问题解决&#xff1a;访问页面空白 说明 1Panel简化了docker的部署&#xff0c;提供了可视化的操作&#xff0c;但是我在尝试创建Ollama WebUI容器时&#xff0c;遇到了从github拉取镜像网速很慢的问题&#xf…