【C语言】结构体详解 (二) 内存函数、结构体传参

目录

1、 结构体的内存对齐

1.1、对齐规则

1.2、练习1、练习2(演示对齐规则1、2、3、4)

2、为什么存在内存对齐

2.1、平台原因(移植原因)

2.2、性能原因

2.3、那么如何即满足对齐,又要节省空间呢?

3、修改默认对齐数

4、结构体传参

4.1、将结构体传到函数print中

4.2、将地址传到函数print中

4.3、区别

5、结构体实现位段

5.1、什么是位段

5.2、位段的内存分配

5.3、注意事项

6、谢谢观看


上一篇博客,写了结构体变量的创建、初始化和声明等内容,今天的这篇博客来带大家深入理解结构体的知识点。希望大家多多支持。 

正文 

1、 结构体的内存对齐

首先,抛一个问题:结构体的大小如何计算?

要知道这个题的答案,首先要了解结构体内存对齐

1.1、对齐规则

1、结构体的第一个成员对齐到和结构体变量起始位置偏移量为0的地址处

2、其他成员变量要对齐到某一个数字(对齐数)的整数倍的地址处

3、结构体总大小为最大对齐数的整数倍

4、如果嵌套了结构体,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数中的最大值的整数倍

偏移量:字节与结构体变量开始存放位置之间相偏移的值

对齐数:编译器默认的一个对齐数与该成员变量大小相比  二者之中取。较小值 

       VS中默认的一个对齐数是  8

       Linux中gcc 没有默认对齐数,对齐数就是成员自身的大小

最大对齐数:结构体中每个成员变量都有一个对齐数,所有对齐数中最大的数

1.2、练习1、练习2(演示对齐规则1、2、3、4)

求结构体的大小

练习1、

(演示对齐规则1、2 、3)

找对齐数: 

对齐数: 编译器默认的一个对齐数与该成员变量大小 相比 二者之中取较小值。

c1  的对齐数是 1

i  的对齐数是4

c2  的对齐数是1

对齐规则1: 结构体的第一个成员对齐到和结构体变量起始位置偏移量为0的地址处

如下图:第一个成员变量c1 放在偏移量为0的位置

对齐规则2:其他成员变量要对齐到其对齐数的整数倍的地址处

成员  i  的对齐数是 4,i 从偏移量为4的倍数的位置开始存放,按本题即从偏移量为4的位置开始,向后存放4个字节。 

 成员  c2  的对齐数是 1, c2  从偏移量为1的倍数的位置开始存放,按本题即从偏移量为8的位置开始,向后存放1个字节。

对齐规则3: 结构体总大小为最大对齐数的整数倍

结构体中三个成员的对齐数分别为  1、4、1,则最大对齐数是 4

那么结构体总大小为 4 的整数倍

由上图,三个成员已经占了9个字节的空间,所以不能少于4的2倍为8

则结构体总大小为  4*3=12,  4的3倍

练习2、

(演示对齐规则4)

对齐规则4: 如果嵌套了结构体,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数中的最大值的整数倍

对于 struct S2   (内嵌结构体),其结构体总大小为2*8=16

内嵌结构体的最大对齐数是  8 

内嵌结构体的最大对齐数是  8 ,则在结构体S3中该结构体的对齐数为8 ,大小为16

由上图,该结构体的大小为  4*8=32 

2、为什么存在内存对齐

2.1、平台原因(移植原因)

不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。

举例说明:有些平台上结构体成员中 int类型的数据只能存在4的倍数的内存中,此时就需要有内存对齐。

2.2、性能原因

数据结构(特别是栈)应该尽可能的在自然边界上对齐。原因:为了访问未对齐的内存 ,处理器需要做两次内存访问;而对齐的内存访问只需要一次。

例如:

在32为平台下,一次访问4个字节,成员i  在对齐的情况下能被一次读完。

不对齐的情况下(按顺序存放)

所以说,内存对齐损耗了空间,但节省了时间,结构体的内存对齐是拿空间来换取时间的做法。 

2.3、那么如何即满足对齐,又要节省空间呢?

请看下面的例子:(两个结构体中只是更改了成员的顺序)

struct S1中 两个占空间小的char 类型的成员分散排列。

而 struct S2中 两个占空间小的char 类型的成员集中在一起排列。 

所以要即满足对齐,又要节省空间的方法是:让占用空间小的成员尽量集中在一起

3、修改默认对齐数

使用 #pragma 这个预处理命令,可以修改编译器的默认对齐数。

具体使用: 

设置默认对齐数为1,相当于不对齐的情况,所占字节是所有成员的字节大小。

结构体在对齐方式不合适的时候,我们可以自己更改默认对齐数。 

4、结构体传参

结构体传参可以传结构体,也可以传地址。但我们首选传地址。

4.1、将结构体传到函数print中

4.2、将地址传到函数print中

4.3、区别

传结构体:在传结构体时需要创建临时结构体来储存,如果结构体中有成员占内存过大,会在传递时产生时间和空间的巨大开销。

正经解释:

函数传参的时候,参数需要压栈,会有时间和空间上的系统开销。

如果传递一个结构体对象的时候,结构体过大,参数压栈的系统开销较大,所以会导致性能下降。 

故:结构体传参的时候,要传结构体的地址。 

5、结构体实现位段

结构体具有实现位段的能力。

5.1、什么是位段

位段成员必须是int、unsigned int或 signed int,在C99中位段成员类型也可以选择其他类型。 

基本形式:位段成员名后面有一个冒号和一个数字。数字代表该成员所占的bit位数。

这里的A就是位段类型。

5.2、位段的内存分配

  • 位段的空间上是按照以4个字节或1个字节的方式来开辟的。
  • 位段涉及很多的不确定因素,是不能跨平台的。 

 详细开辟方式如结构体。

5.3、注意事项

 不能对位段的成员使用&操作符,这样就不能使用scanf直接给位段的成员输入值,只能是先输入放在一个变量中,然后赋值给位段成员。

如下:

6、谢谢观看

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/500827.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

虚拟机体验 mac、Linux、Windows,老游戏和软件再也没有兼容问题

安装虚拟机 下载好 VMwareWorkstation Pro 后运行安装程序,根据流程完成安装; 勾选许可协议,点击「下一步」; 这里注意更改安装路径,最好选择 C 盘以外的其他磁盘,选择好后点击「下一步」; 这里…

使用filezilla连接Ubuntu22.04虚拟机

获取电脑IP和虚拟机IP ① 在windows下ctrlR再输入cmd,打开指令窗口,输入 ipconfig 虚拟机连接电脑用的是NAT模式,故看VMnet8的IP地址 ② 查看虚拟机IP地址 终端输入 ifconfig 如果没安装,按提示安装net-tools sudo apt install …

解决GNU Radio+USRP实现OFDM收发在接收端QPSK星座图映射无“抖动”问题

文章目录 前言一、遇到的问题二、解决方案三、重新编译安装四、验证五、资源自取 前言 本文记录在 GNU RadioUSRP 实现 OFDM 收发时,在接收端 QPSK 星座图映射无“抖动”问题的解决方法, 一、遇到的问题 我遇到的问题是,现在搭建的 OFDM 模…

顶顶通呼叫中心中间件-声音编码自适应配置方法(mod_cti基于FreeSWITCH)

顶顶通呼叫中心中间件-声音编码自适应配置方法讲解(mod_cti基于FreeSWITCH) 声音编码自适应介绍 声音编码自适应,通常在语音通信和音频处理领域中指的是一种能够根据信号特性和传输环境自动调整编码参数的技术。其目的是在不同的网络状况和音质要求下,…

【跟着CHATGPT学习硬件外设 | 04】ADC

本文根据博主设计的Prompt由CHATGPT生成,形成极简外设概念。 🚀 1. 概念揭秘 1.1 快速入门 模数转换器(ADC,Analog-to-Digital Converter)是一种将模拟信号转换为数字信号的电子设备。模拟信号通常表示物理测量的连…

IDEA报错:java.nio.charset.MalformedInputException: Input length = 1

今天启动Springboot项目的时候报错: 一、问题 java.nio.charset.MalformedInputException: Input length 1和Input length 2 二、原因 是因为你的配置文件里面有中文或者是你的编码格式不正确导致 三、解决方案 解决方案一: 改变你的编码格式改为UT…

linux centos7.9 weblogic14c java1.8.401 安装部署流程

一、获取安装包: Java1.8.401:Java Downloads | Oracle weblogic 14c:https://download.oracle.com/otn/nt/middleware/14c/14110/fmw_14.1.1.0.0_wls_lite_Disk1_1of1.zip 选generic版本 二、将安装包传到Linux服务器上 方法不限&#xf…

使用hexo框架快速在github上搭建静态博客

今天来说一下使用hexo框架搭建静态博客,玩玩还不错。 我的操作系统 文章目录 一、部署到本地二、新建博客三、更换主题四、部署到github五、其他 一、部署到本地 首先下载好nodejs和git工具,建议直接去清华镜像源下载 node.js git 这中间环境变量的配置…

Android Studio 2023.2.1版本 kotlin编译报错踩坑

1、需求 由于最近在整理项目,做一些公共基础组件Maven仓库封装,由于之前项目jar包和kotlin版本很老,kotlin版本1.3.72版本 Gradle使用5.4.1 Android Studio版本是2023.2.1,分别依次顺序如下图所示。 如下图所示 2、分析编译报错…

动态内存管理+柔性数组

动态内存存在的意义 C语言是一种过程式编程语言,提供了底层访问能力和丰富的功能,广泛应用于操作系统、嵌入式系统、硬件驱动程序等领域。C语言的动态内存管理主要是通过malloc()、calloc()、realloc()和free()这几个标准库函数来实现的。 理解动态内存…

【御控物联】JavaScript JSON结构转换(12):对象To数组——键值互换

文章目录 一、JSON结构转换是什么?二、核心构件之转换映射三、案例之《JSON对象 To JSON数组》四、代码实现五、在线转换工具六、技术资料 一、JSON结构转换是什么? JSON结构转换指的是将一个JSON对象或JSON数组按照一定规则进行重组、筛选、映射或转换…

智慧乡村建设新篇章:数字乡村引领农村发展新时代

目录 一、智慧乡村的内涵与建设的必要性 二、智慧乡村建设的路径探索 (一)加强信息基础设施建设,夯实智慧乡村发展基础 (二)推动农业智能化升级,提升农业生产效率和质量 (三)推…

Flask Python:请求上下文和应用上下文

请求上下文和应用上下文详解 一、背景二、什么是上下文2.1、请求上下文2.2、应用上下文2.3、两种上下文的底层逻辑 三、写在最后 一、背景 在如何实现异步发送邮件的时候,遇到过这样一个报错 RuntimeError: Working outside of request context.This typically me…

vue基础教程(4)——十分钟吃透vue路由router

同学们可以私信我加入学习群! 正文开始 前言一、路由概念二、路由使用三、创建路由对应的组件四、给整个项目一个入口总结 前言 前面的文章运行成功后,页面显示如下: 在这个页面中,点击Home和About都会切换右面的页面内容&#…

PTA L2-038 病毒溯源

病毒容易发生变异。某种病毒可以通过突变产生若干变异的毒株,而这些变异的病毒又可能被诱发突变产生第二代变异,如此继续不断变化。 现给定一些病毒之间的变异关系,要求你找出其中最长的一条变异链。 在此假设给出的变异都是由突变引起的&a…

uniapp对接极光推送(国内版以及海外版)

勾选push,但不要勾选unipush 国内版 网址:极光推送-快速集成消息推送功能,提升APP运营效率 (jiguang.cn) 进入后台,并选择对应应用开始配置 配置安卓包名 以及ios推送证书,是否将生产证书用于开发环境选择是 ios推送证书…

C++Template<>模版的介绍及深度解析

一、泛型编程 1.什么是泛型编程 泛型编程&#xff1a;是一种程序设计方法&#xff0c;编写于类型无关的通用代码&#xff0c;实现代码复用。而模版就是泛型编程的基础和核心。 二、template<>模版 1.template模版介绍 模版&#xff0c;顾名思义就是一个模具&#xff0…

【redis】linux安装redis

目录 1. 下载redis2. 上传并解压3. 安装4. redis配置5. 启动redis-server服务 1. 下载redis 1.Redis官网2.历史版本 2. 上传并解压 1.上传到/opt/redis 2.解压 tar zxvf redis-5.0.2.tar.gz 3. 安装 1.安装gcc yum install gcc-c2.make命令 # cd /opt/redis sudo make3.…

Elment ui 动态表格与表单校验 列表数据 组件

组件做个记录&#xff0c;方便以后会用到。 效果&#xff1a; 代码 &#xff1a; <template><el-dialog title"商品详情" :visible.sync"dialogVisible" width"80%"><el-tabs v-model"activeTab"><el-tab-pane…

第十二章:预处理命令

文章目录 第十二章&#xff1a;预处理命令宏定义无参宏定义带参数的宏定义 文件包含处理 第十二章&#xff1a;预处理命令 作用&#xff1a;由编译预处理程序对程序中的特殊命令作出解释&#xff0c;以产生新的源程序对其进行正式编译 C语言与其他语言的重要区别就是可以使用预…