sheng的学习笔记-AI-人脸识别

目录:sheng的学习笔记-AI目录-CSDN博客

需要学习卷机神经网络等知识,见ai目录

目录

基础知识:

人脸验证(face verification)

人脸识别(face recognition)

One-Shot学习(One-shot learning)

困难点:

​编辑 

传统的解决办法

解决方案-Similarity函数

Siamese 网络(Siamese network)

Triplet 损失

triplet训练集的选择

​编辑 

人脸验证与二分类(Face verification and binary classification)

提升部署效果的技巧

参考文章:


 

基础知识:

人脸验证(face verification

如果你有一张输入图片,以及某人的ID或者是名字,这个系统要做的是,验证输入图片是否是这个人。有时候也被称作1对1问题,只需要弄明白这个人是否和他声称的身份相符

人脸识别(face recognition

最大的难度就是,你提供了一个照片,ai程序如何通过一个照片,判断当前显示器捕捉的头像,和照片中的是否一个人,因为ai是给予海量数据训练出的模型,但目前仅有一个照片,用传统的ai模型,显然无法达到目的

One-Shot学习(One-shot learning)

困难点:

 

假设你的数据库里有4张你们公司的员工照片,实际上他们确实是我们deeplearning.ai的员工,分别是KianDanielleYounesTian。现在假设有个人(编号1所示)来到办公室,并且她想通过带有人脸识别系统的栅门,现在系统需要做的就是,仅仅通过一张已有的Danielle照片,来识别前面这个人确实是她。相反,如果机器看到一个不在数据库里的人(编号2所示),机器应该能分辨出她不是数据库中四个人之一

所以在一次学习问题中,只能通过一个样本进行学习,以能够认出同一个人。大多数人脸识别系统都需要解决这个问题,因为在你的数据库中每个雇员或者组员可能都只有一张照片。

传统的解决办法

有一种办法是,将人的照片放进卷积神经网络中,使用softmax单元来输出4种,或者说5种标签,分别对应这4个人,或者4个都不是,所以softmax里我们会有5种输出。但实际上这样效果并不好,因为如此小的训练集不足以去训练一个稳健的神经网络。

而且,假如有新人加入你的团队,你现在将会有5个组员需要识别,所以输出就变成了6种,这时你要重新训练你的神经网络吗?这听起来实在不像一个好办法。

解决方案-Similarity函数

Siamese 网络(Siamese network)

这是个常见的卷积网络,根据输入x,通过一些列卷积,池化和全连接层,最终得到这样的特征向量,有时这个会被送进softmax单元来做分类,但这次我们不这样做。

对于编号1和编号2 ,都会生成128维的向量f(x1)和f(x2)

对于两个不同的输入,运行相同的卷积神经网络,然后比较它们,这一般叫做Siamese网络架构

x

 

Triplet 损失

要想通过学习神经网络的参数来得到优质的人脸图片编码,方法之一就是定义三元组损失函数然后应用梯度下降。

为了应用三元组损失函数,你需要比较成对的图像,比如这个图片,为了学习网络的参数,你需要同时看几幅图片,比如这对图片(编号1和编号2),你想要它们的编码相似,因为这是同一个人。然而假如是这对图片(编号3和编号4),你会想要它们的编码差异大一些,因为这是不同的人。

用三元组损失的术语来说,你要做的通常是看一个 Anchor 图片,你想让Anchor图片和Positive图片(Positive意味着是同一个人)的距离很接近。然而,当Anchor图片与Negative图片(Negative意味着是非同一个人)对比时,你会想让他们的距离离得更远一点

 

 

 

三元组损失函数的定义基于三张图片,假如三张图片A、P、N,即Anchor样本、Positive样本和Negative样本,其中Positive图片和Anchor图片是同一个人,但是Negative图片和Anchor不是同一个人。

这是一个三元组定义的损失,整个网络的代价函数应该是训练集中这些单个三元组损失的总和。假如你有一个10000个图片的训练集,里面是1000个不同的人的照片,你要做的就是取这10000个图片,然后生成这样的三元组,然后训练你的学习算法,对这种代价函数用梯度下降,这个代价函数就是定义在你数据集里的这样的三元组图片上。

注意,为了定义三元组的数据集你需要成对的A和P,即同一个人的成对的图片,为了训练你的系统你确实需要一个数据集,里面有同一个人的多个照片。这是为什么在这个例子中,我说假设你有1000个不同的人的10000张照片,也许是这1000个人平均每个人10张照片,组成了你整个数据集。如果你只有每个人一张照片,那么根本没法训练这个系统。当然,训练完这个系统之后,你可以应用到你的一次学习问题上,对于你的人脸识别系统,可能你只有想要识别的某个人的一张照片。但对于训练集,你需要确保有同一个人的多个图片,至少是你训练集里的一部分人,这样就有成对的AnchorPositive图片了

triplet训练集的选择

选择A和P的差异比较大的图片进行训练,看下面,虽然A和P是一个人,但照片风格差异比较大,逼迫网络对于相同人的识别敏感度增加 

总结一下,训练这个三元组损失你需要取你的训练集,然后把它做成很多三元组,这就是一个三元组(编号1),有一个Anchor图片和Positive图片,这两个(AnchorPositive)是同一个人,还有一张另一个人的Negative图片。这是另一组(编号2),其中AnchorPositive图片是同一个人,但是AnchorNegative不是同一个人,等等。

 

人脸验证与二分类(Face verification and binary classification)

Triplet loss是一个学习人脸识别卷积网络参数的好方法,还有其他学习参数的方法,让我们看看如何将人脸识别当成一个二分类问题。

另一个训练神经网络的方法是选取一对神经网络,选取Siamese网络,使其同时计算这些嵌入,比如说128维的嵌入(编号1),或者更高维,然后将其输入到逻辑回归单元,然后进行预测,如果是相同的人,那么输出是1,若是不同的人,输出是0。这就把人脸识别问题转换为一个二分类问题,训练这种系统时可以替换Triplet loss的方法

总结一下,把人脸验证当作一个监督学习,创建一个只有成对图片的训练集,不是三个一组,而是成对的图片,目标标签是1表示一对图片是一个人,目标标签是0表示图片中是不同的人。利用不同的成对图片,使用反向传播算法去训练神经网络,训练Siamese神经网络。

 

提升部署效果的技巧

一个计算技巧可以帮你显著提高部署效果,如果这是一张新图片(编号1),当员工走进门时,希望门可以自动为他们打开,这个(编号2)是在数据库中的图片,不需要每次都计算这些特征(编号6),不需要每次都计算这个嵌入,你可以提前计算好,那么当一个新员工走近时,你可以使用上方的卷积网络来计算这些编码(编号5),然后使用它,和预先计算好的编码进行比较,然后输出预测值。

因为不需要存储原始图像,如果你有一个很大的员工数据库,你不需要为每个员工每次都计算这些编码。这个预先计算的思想,可以节省大量的计算,这个预训练的工作可以用在Siamese网路结构中,将人脸识别当作一个二分类问题,也可以用在学习和使用Triplet loss函数上

参考文章:

吴恩达的神经网络教程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/498311.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

探索数据库--------------mysql主从复制和读写分离

目录 前言 为什么要主从复制? 主从复制谁复制谁? 数据放在什么地方? 一、mysql支持的复制类型 1.1STATEMENT:基于语句的复制 1.2ROW:基于行的复制 1.3MIXED:混合类型的复制 二、主从复制的工作过程 三个重…

踏入网页抓取的旅程:使用 grequests 构建 Go 视频下载器

引言 在当今数字化的世界中,网页抓取技术变得越来越重要。无论是获取数据、分析信息,还是构建自定义应用程序,我们都需要从互联网上抓取数据。本文将介绍如何使用 Go 编程语言和 grequests 库来构建一个简单的 Bilibili 视频下载器&#xff…

《亮数据:爬虫数据采集行业痛点的利器》

❤️作者主页:小虚竹 ❤️作者简介:大家好,我是小虚竹。2022年度博客之星评选TOP 10🏆,Java领域优质创作者🏆,CSDN博客专家🏆,华为云享专家🏆,掘金年度人气作…

IDEA2023使用手册 【持续更新...】

IDEA介绍 IDEA官网:https://www.jetbrains.com.cn/idea/IDEA 2023.2.2下载地址:https://download.jetbrains.com/idea/ideaIU-2023.2.2.exe对第三方软件的支持:https://www.jetbrains.com/legal/third-party-software/?productiiu&versi…

gin | gin会话控制

会话控制 Cookie介绍 HTTP是无状态协议,服务器不能记录浏览器的访问状态,也就是说服务器不能区分两次请求是否由同一个客户端发出;Cookie 就是解决 HTTP 协议无状态的方案之一,中文是小甜饼的意思;Cookie 实际上就是…

香港90年代著名女歌手病逝终年58岁 抗癌大半年今早睡梦中离世

90年代玉女歌手黎明诗 (Stephanie) 今日(3月28日)惊爆病逝的消息,终年58岁。不少圈中朋友已收到消息,得悉她的死讯都大感惋惜。据知黎明诗积极抗癌大半年,今早在睡梦中离开。 黎明诗退出乐坛多年,其后在201…

Colorize (Texture Color Palette Modifier)

Colorize提供了无与伦比的区域颜色调整和效果控制,如使用纹理调色板的模型的发射、金属反射和模拟金属遮挡。 Colorize彻底改变了你在Unity中为3D模型添加颜色和生命的方式。无论你是一个独立开发者、艺术家,还是一个大型团队的一员,Colorize都提供了一套直观、强大的工具,…

Wireshark自定义协议解析器插件C语言开发

文章目录 概要Wireshark 软件整体架构基本概念解析器实现逻辑解析器编译环境搭建软件编译过程 概要 Wireshark是一款全球使用与开发维护人数最多的遵循GPL协议开源的网络协议分析软件,全球开发者为Wireshark编写了数千种协议的解析插件。 在实际的工作中&#xff0…

软件工程学习笔记10——开发编码篇2

开发编码篇 一、软件工程师的核心竞争力1、学习能力2、解决问题的能力(1)发现问题(2)分析问题(1)解决问题 3、影响力4、总结 二、如何提升软件工程师的核心竞争力1、如何提升学习能力2、如何提高解决问题的…

【python 数据可视化】 WordCloud词云图

目录 词云简介 准备工作 安装方法一: 安装方法二: 生成词云步骤 数据预处理: 分词: 统计词频出现的次数: 去除词语: 生成词云: 显示词云: 保存词云: 完整代码 词…

Docker搭建LNMP环境实战(07):安装nginx

1、模拟应用场景描述 假设我要搭建一个站点,假设虚拟的域名为:api.test.site,利用docker实现nginxphp-fpmmariadb部署。 2、目录结构 2.1、dockers根目录 由于目前的安装是基于Win10VMWareCentOS虚拟机,同时已经安装了VMWareT…

状态压缩DP【蒙德里安的梦想】

题目描述 输入样例 1 2 1 3 1 4 2 2 2 3 2 4 2 11 4 11 0 0输出样例 1 0 1 2 3 5 144 51205题目链接 https://www.acwing.com/problem/content/293/ 分析 总方案数即为横放的方案数,因为横放完后列填补只会出现一种情况1表示横放,0表示竖放如果合并…

实验2-spark编程

实验目的 (1)通过实验掌握Spark的基本编程方法; (2)熟悉RDD到DataFrame的转化方法; (3)熟悉利用Spark管理来自不同数据源的数据。 实验内容 1.Spark基本操作 请参照…

OpenPLC_Editor 在Ubuntu 虚拟机安装记录

1. OpenPLC_Editor在虚拟机上费劲的装了一遍,有些东西已经忘了,主要还是python3 的缺失库版本对应问题,OpenPLC_Editor使用python3编译的,虚拟机的Ubuntu 18.4 有2.7和3.6两个版本,所以需要注意。 2. OpenPLC_Editor …

自动发卡平台源码优化版,支持个人免签支付

源码下载地址:自动发卡平台源码优化版.zip 环境要求: php 8.0 v1.2.6◂ 1.修复店铺共享连接时异常问题 2024-03-13 23:54:20 v1.2.5 1.[新增]用户界面硬币增款扣款操作 2.[新增]前台对接库存信息显示 3.[新增]文件缓存工具类[FileCache] 4.[新增]库存同…

基于单片机技术的门禁系统硬件设计研究

摘要:门禁系统在工业领域的应用十分广泛,如何利用单片机技术对门禁系统中的硬件进行管理与控制已经成为相关单位十分重要的研究课题之一。因此,文章设计了一套基于单片机技术的门禁系统硬件方案,旨在充分发挥单片机设备在自动化控制方面的优势,提高门禁系统的自动化水平。…

车载以太网AVB交换机 gptp透明时钟 5口 全千兆 SW1500

全千兆车载以太网交换机 一、产品简要分析 5端口千兆车载以太网交换机,包含4个通道的1000BASE-T1接口使用罗森博格H-MTD和泰科MATEnet双接口,1个通道1000BASE-T标准以太网(RJ45接口),可以实现车载以太网多通道交换,千兆和百兆车载…

【数据结构】带头双向链表的实现

👑个人主页:啊Q闻 🎇收录专栏:《数据结构》 🎉道阻且长,行则将至 前言 带头双向链表是链表的一种,相较于单链表的实现,其更为简单 一.初识带头双向循环链表 带头…

【漏洞分析】浅析android手游lua脚本的加密与解密(二)

反编译本人用到的是luajit-decomp,这里需要注意,luajit-decomp默认的lua版本为5.1,luajit版本为2.0.2,我们需要下载对应lua和luajit的版本,编译后替换luajit-decomp下的lua51.dll、luajit.exe、jit文件夹。反编译时需要注意的文件和文件夹: 这里需要下载版本为2.1.0-bet…

用 AI 编程-释放ChatGPT的力量

最近读了本书,是 Sean A Williams 写的,感觉上还是相当不错的。一本薄薄的英文书,还真是写的相当好。如果你想看,还找不到,可以考虑私信我吧。 ChatGPT for Coders Unlock the Power of AI with ChatGPT: A Comprehens…