大模型时代下的“金融业生物识别安全挑战”机遇

作者:中关村科金AI安全攻防实验室 冯月

金融行业正在面临着前所未有的安全挑战,人脸安全事件频发,国家高度重视并提出警告,全行业每年黑产欺诈涉及资金额超过1100亿元。冰山上是安全事件,冰山下隐藏的是“裸奔”的技术防御系统,快速发展的生成式算法平均每1.5天就有一个新的变种出现,而防御技术的迭代上线周期超过90天,零日漏洞风险敞口超过88.5天。

其中核心问题是攻击数据的严重不足,“引擎缺乏燃料”,现有防御方法跟不上攻击方法的演变速度,基于事件的专家防御体系强依赖于人工数据采集、标注、处理的流程,以扩大corner case规模,该过程占据了技术迭代更新过程中超过90%的时间成本。

行业迫切需要一个针对“零日漏洞”的“零日修复”方案缩小风险敞口,下一代防伪技术金融领域的多模态防伪专有大模型为此提供了一个新思路,大模型可以同时解决燃料和引擎问题,实现“tesla的跑车油改电”、“福特的汽车代马车”。中关村科金通过使用超过2PB的海量数据对大模型进行专项调优,增广基础攻击数据类型、激发模型“涌现”潜能,激活其域外识别能力,将识别数量级从1个9提升到3个9,大幅缩小漏洞风险敞口。大模型是跨时代的产物,是当下解决金融机构面临的生物识别零日漏洞频发危机的唯一可行路径。

人脸安全事件层出不穷,国家多部门发出紧急警告

从具体事件来看,据媒体披露,2024年一家跨国公司香港分部的职员受“换脸、换声”技术欺骗,将2亿港元分别转账15次、转到5个本地银行账户内;2023年包头警方发布一起利用“换脸、换声”技术欺诈案例,福州市某科技公司法人代表郭先生10分钟内被骗430万元;2021年交通银行受到来自IP地址为中国台湾的犯罪分子攻击,7次通过了交通银行的人脸识别,6次通过活体检测。

从国家监管预警趋势看,公安部分两次于2020年、2022年向头部互联网服务机构发出预警,披露9种人脸安全风险;国家网信办于2021年、2023年发出警示,并要求各互联网机构提升人脸识别技术应用安全管理水平;国家金融管理中心,原中国银保监会,于2021年、2023年直接向金融机构下达指示,警惕利用AI新型技术实施诈骗、加强人脸识别技术应用安全管理。这只是冰山上的数字,如果我们下沉到海平面之下,深入到金融机构中,一家普通规模的金融机构一年就要面临超过1万次攻击;据联盟统计,全行业每年黑产欺诈涉及资金超1100亿元。

究其原因,金融是国民经济的血脉,也是被不法分子攻击的首要目标,可谓“野火烧不尽、春风吹又生”。

提升金融业技术防御水平已迫在眉睫,新攻击方法层出不穷,而金融机构科技建设严重滞后,形同裸奔

从机构建设速度看,最快更新时间需要90天。据公开招标信息披露,过去2年间,以国股行为首的头部金融机构已经完成了一轮技术升级,但相较于上一次技术升级,间隔在3-5年;而在金融机构采买的服务中,最短的升级速度也在90天以上,更常见的是1年1次的更新服务。

从攻击方法的创新速度看,平均1.5天就有一种新攻击方法出现。国际顶会CVPR2023仅一年便发布超过130篇关于图像、人脸、声音的生成方法,2024年sora发布仅一周后,阿里便发布了EMO算法,精细的还原了一个人的声音、面部表情、口型、舌动;在应用市场中,新增注入攻击、换脸换声软件超过百余种,包括uface、趣换脸、insightface、Xpression等。

从作案工具易得性看,在地下交易市场中,攻击道具交易已颇具规模,通常200元就能买到一次定点攻击服务。金融行业的技术更新速度已经严重制约了金融安全防御体系的建设零日漏洞(0-day)已经从操作系统、计算机网络下沉到了人工智能中,并深度影响着金融行业的健康发展,在新型攻势的88.5天(90-1.5)中,机构防御手段如同裸奔

金融机构防御体系建设慢的核心问题是攻击数据的有效性不足

这一方面是吃不饱导致的。攻击数据少是一个相对概念,是一种由认知偏差导致的数据的动态不足,而不是绝对数量的不足,“人不能知道自己不知道的东西(unconscious incompetence)”。防御方案需要针对攻击特点来设计,天然滞后于攻击的发生,这就带来了认知的客观时间差。金融机构的技术更新就是典型样例,防御升级通常围绕事件展开,如通过巡检、或者行业联盟共享的素材,而这些事件所提供的负样本数目非常少。这些数据是不足以支撑一次训练,也即无法提升专家模型的能力。因此,通常技术部门需要先对这些负样本(corner case)进行解析,分析其生成原理和特征,然后人工进行数据采集、数据标注、数据处理,最后用于训练,验证,最终完成技术升级,超过90%的时间成本被花在了数据的构建上,这也直接造成了机构“裸奔现象”。

更重要的,另一方面是吸收少导致的。从攻击数据到模型性能存在一个“能量转化率”,这是一种系统性能力不足,也可以比作“营养失调”、“肠胃差”。专家模型的认知方式与人有较大差异,从标注方式来看,专家模型训练数据真值(ground truth)是在采集前确定的,全部都有真值;人的训练数据是先对海量无标数据的归纳、然后通过极少数量的有标数据启发得来的。专家模型本身并不是拟合的“人的认知”,而是拟合的“特定攻击手法的作案特征”,这也就解释了为什么专家模型在针对同类攻击行为的检出上远高于人类,但对新攻击的识别远逊于人类。

业务目标是更快的补全漏洞,如果我们头疼医头、脚痛医脚只能陷入被动解决吸收问题更重要。因此,我们迫切需要一种划时代的应用,一个胃口好、消化好的铁胃来解决零日漏洞频发危机。

一种零日修复方案、下一代防伪技术,金融领域的多模态防伪专有大模型提供了一个新思路

更强的编码能力。谷歌在2018年提出了预训练模型,transformer技术崭露头角,基于transformer的BERT技术向我们证明了一切专家问题本质是编码问题,编码能力的提升直接影响着专家判断的准确性。

更强的数据承载能力。2020年,OpenAI发表了关于scaling laws的关键论文,并在2022年GPT3.0上证明了超大规模的数据可以产生“知识涌现”现象,如今大模型规模已经突破100B。

好胃口+好消化=超强的域外推理能力,大模型增强了对没见过问题的处理能力。2023年,google发布多模态大模型Gemini,中关村科金对其进行了防伪能力的专项测试,发现其不仅可以指出图片的真假,甚至可以讲出图片假在什么地方,如纹理、毛发、环境、一致性等。尽管此时的通用大模型能力还不如专有大模型,但我们快速将大模型引入了防伪体系建设中,我们在超过4亿规模的真人图像、音频样本数据集上,通过“基于超过100种基础伪造攻击算法实现的万倍数据增广方案”最终将数据集扩大到2PB。经过测试,“金融领域的多模态防伪专有大模型”相较于“传统专家模型”能力有显著提升,以针对“对抗样本攻击”的防御为例,我们将防御指标从1个9(90%),提升到了3个9(99.9%),大幅缩小漏洞风险敞口。

大模型是跨时代的产物,是当下解决金融机构面临的生物识别“零日漏洞”频发危机的唯一可行路径。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/498004.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

前端的拖拽序列(drag)

html和css代码如下 <style>.item {width: 200px;height: 50px;background: rgb(15, 226, 219);margin: 10px 0;padding-left: 20px;border-radius: 10px;line-height: 50px;}.item.move {background: transparent;color: transparent;border: 1px dashed #ccc;}</sty…

安卓国内ip代理app,畅游网络

随着移动互联网的普及和快速发展&#xff0c;安卓手机已经成为我们日常生活和工作中不可或缺的一部分。然而&#xff0c;由于地理位置、网络限制或其他因素&#xff0c;我们有时需要改变或隐藏自己的IP地址。这时&#xff0c;安卓国内IP代理App便成为了一个重要的工具。虎观代理…

springdata框架对es集成

什么是spring data框架 Spring Data是一个用于简化数据库、非关系型数据库、索引库访问&#xff0c;并支持云服务的开源框架。其主要目标是使得对数据的访问变得方便快捷&#xff0c;并支持 map-reduce框架和云计算数据服务。Spring Data可以极大的简化JPA(Elasticsearch…)的…

深入Spark与LDA:大规模文本主题分析实战

使用LDA模型和Spark进行文本主题分析 本篇博客介绍了如何使用LDA&#xff08;潜在狄利克雷分配&#xff09;模型和Spark进行文本主题分析。我们的目标是从大量的用户评论中提取出主题。 1. 环境设置 首先&#xff0c;我们需要导入所需的库&#xff0c;包括jieba&#xff08;…

samba实现linux共享文件夹

一、samba安装 sudo apt install samba 二、配置Samba 编辑Samba配置文件sudo vi /etc/samba/smb.conf 在文件末尾添加以下内容&#xff0c;设置一个简单的共享目录&#xff08;替换path_to_share为实际的共享目录路径&#xff09;&#xff1a; [Share] path /path_to_sha…

【React】onClick点击事件传参的4种方式

记录React onClick 点击事件传参的 4 种方式 方式一&#xff1a;使用内联箭头函数 import React, { MouseEvent } from "react";function App() {const handleClick (event: MouseEvent<HTMLButtonElement>, name: string) > {console.log(event)console.…

linux 环境安装配置

安装java17 1.下载安装包 wget https://download.oracle.com/java/17/latest/jdk-17_linux-x64_bin.tar.gz 2.解压到自定义目录/usr/local/java mkdir /usr/local/java tar zxvf jdk-17_linux-x64_bin.tar.gz -C /usr/local/java 3.配置环境变量 echo export PATH$PATH:/…

Docker 夺命连环 15 问

目录 什么是Docker&#xff1f; Docker的应用场景有哪些&#xff1f; Docker的优点有哪些&#xff1f; Docker与虚拟机的区别是什么&#xff1f; Docker的三大核心是什么&#xff1f; 如何快速安装Docker&#xff1f; 如何修改Docker的存储位置&#xff1f; Docker镜像常…

2024年购买阿里云服务器多少钱?100元到500元年预算

2024年阿里云服务器优惠价格表&#xff0c;一张表整理阿里云服务器最新报价&#xff0c;阿里云服务器网aliyunfuwuqi.com整理云服务器ECS和轻量应用服务器详细CPU内存、公网带宽和系统盘详细配置报价单&#xff0c;大家也可以直接移步到阿里云CLUB中心查看 aliyun.club 当前最新…

分享react+three.js展示温湿度采集终端

前言 气象站将采集到的相关气象数据通过GPRS/3G/4G无线网络发送到气象站监测中心&#xff0c;摆脱了地理空间的限制。 前端&#xff1a;气象站主机将采集好的气象数据存储到本地&#xff0c;通过RS485等线路与GPRS/3G/4G无线设备相连。 通信&#xff1a;GPRS/3G/4G无线设备通…

Vue 03 组件通信

Vue学习 Vue 0301 浏览器本地存储localStorageSessionStorage案例 todolist的完善 02 组件自定义事件Custom Events基本使用解绑自定义事件注意事项①② 总结案例 todolist的完善 03 全局事件总线GlobalEventBus案例 todolist的完善 04 消息的订阅与发布案例 todolist的完善 05…

利用R语言和curl库实现网页爬虫的技术要点解析

R语言简介 R语言是一种自由、跨平台的编程语言和软件环境&#xff0c;专门用于统计计算和数据可视化。它具有丰富的数据处理、统计分析和图形展示功能&#xff0c;被广泛应用于数据科学、机器学习、统计建模等领域。 R语言技术优势 丰富的数据处理功能&#xff1a; R语言拥有…

unity双层滑动实现

实现功能&#xff1a; 当滑动列表中内容处于顶端的时候&#xff0c;向上滑动优先滑动整个滑动列表&#xff0c;当滑动列表移动到设置位置&#xff0c;即设定的最高处时&#xff0c;继续移动列表内内容。向下移动亦然&#xff0c;当内容处于滑动列表顶端时&#xff0c;移动整个滑…

低功耗、低成本 NAS/公共文件夹 的可能性

使用现状&#xff1a;多台工作电脑&#xff0c;家里人手一台&#xff0c;还在两个住处 有好几台工作电脑&#xff0c;不同电脑不同OS有不同的用途&#xff0c;最大的问题就是各个电脑上文件的同步问题&#xff0c;这里当然就需要局域网里的公共文件夹&#xff0c;在NAS的问题上…

R语言使用dietaryindex包计算NHANES数据多种营养指数(2)

健康饮食指数 (HEI) 是评估一组食物是否符合美国人膳食指南 (DGA) 的指标。Dietindex包提供用户友好的简化方法&#xff0c;将饮食摄入数据标准化为基于指数的饮食模式&#xff0c;从而能够评估流行病学和临床研究中对这些模式的遵守情况&#xff0c;从而促进精准营养。 该软件…

Unity3d使用Jenkins自动化打包(Windows)(一)

文章目录 前言一、安装JDK二、安装Jenkins三、Jenkins插件安装和使用基础操作 实战一基础操作 实战二 四、离线安装总结 前言 本篇旨在介绍基础的安装和操作流程&#xff0c;只需完成一次即可。后面的篇章将深入探讨如何利用Jenkins为Unity项目进行打包。 一、安装JDK 1、进入…

【嵌入式机器学习开发实战】(十二)—— 政安晨:通过ARM-Linux掌握基本技能【C语言程序的安装运行】

政安晨的个人主页&#xff1a;政安晨 欢迎 &#x1f44d;点赞✍评论⭐收藏 收录专栏: 嵌入式机器学习开发实战 希望政安晨的博客能够对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff01; 在ARM-Linux系统中&#xff0c;C语言程序的安装和运行可…

快速上手Spring Cloud 六:容器化与微服务化

快速上手Spring Cloud 一&#xff1a;Spring Cloud 简介 快速上手Spring Cloud 二&#xff1a;核心组件解析 快速上手Spring Cloud 三&#xff1a;API网关深入探索与实战应用 快速上手Spring Cloud 四&#xff1a;微服务治理与安全 快速上手Spring Cloud 五&#xff1a;Spring …

啥也不会的大学生看过来,这8步就能系统入门stm32单片机???

大家好&#xff0c;今天给大家介绍啥也不会的大学生看过来&#xff0c;这8步就能系统入门stm32单片机&#xff0c;文章末尾附有分享大家一个资料包&#xff0c;差不多150多G。里面学习内容、面经、项目都比较新也比较全&#xff01;可进群免费领取。 对于没有任何基础的大学生来…

数据库原理与应用(SQL Server)笔记 关系数据库

目录 一、关系数据库的基本概念&#xff08;一&#xff09;关系数据库的定义&#xff08;二&#xff09;基本表、视图&#xff08;三&#xff09;元组、属性、域&#xff08;四&#xff09;候选码、主码、外码 二、关系模型三、关系的完整性&#xff08;一&#xff09;实体完整…