MTransE阅读笔记

Multilingual Knowledge Graph Embeddings for Cross-lingual Knowledge Alignment

用于交叉知识对齐的多语言知识图谱嵌入(MTransE)

Abstract

最近的许多工作已经证明了知识图谱嵌入在完成单语知识图谱方面的好处。由于相关的知识库是用几种不同的语言构建的,因此实现跨语言知识对齐将有助于人们构建连贯的知识库,并帮助机器处理不同人类语言之间实体关系的不同表达。不幸的是,通过人工实现这种高度期望的跨舌对齐是非常昂贵且容易出错的。因此,我们提出了 M T r a n s E MTransE MTransE,一个基于推理的多语言知识图谱嵌入模型,以提供一个简单和自动化的解决方案。通过在单独的嵌入空间中编码每种语言的实体和关系, M T r a n s E MTransE MTransE为每个嵌入向量提供了到其他空间中的跨语言对应物的转换,同时保留了单语嵌入的功能。我们部署了三种不同的技术来表示跨语言的过渡,即轴校准,平移向量和线性变换,并得出五个变种 M T r a n s E MTransE MTransE使用不同的损失函数。我们的模型可以在部分对齐的图上进行训练,其中只有一小部分三元组与跨语言对应项对齐。跨语言实体匹配和三重对齐验证的实验显示了良好的效果,一些变体在不同的任务中始终优于其他变体。我们还探讨了 M T r a n s E MTransE MTransE如何保留其单语对应物 T r a n s E TransE TransE的关键属性。

1 Introduction

知识库被建模为知识图谱,存储两个方面的知识:单语知识,包括以三元组形式记录的实体和关系,以及跨语言知识,在各种人类语言中匹配单语知识。

基于嵌入的技术可以帮助提高单语知识的完整性,但将这些技术应用于跨语言知识的问题在很大程度上尚未探索(包括匹配相同实体的语言间链接(ILLs)和表示相同关系的三重对齐(TWA))。

利用知识图谱嵌入跨语言知识比较困难(不同语言的知识图谱中的实体和关系进行映射和转换的过程):

  1. 跨语言转换比任何单语言关系翻译都具有更大的域;
  2. 它适用于实体和关系,这些实体和关系在不同语言之间具有不连贯的词汇表;
  3. 用于训练这种转换的已知对齐通常占知识库的一小部分。

提出多语言知识图谱嵌入模型(MTransE),使用两个组件模型,即知识模型和对齐模型的组合来学习多语言知识图结构。知识模型以特定语言版本的知识图对实体和关系进行编码。对齐模型在不同的嵌入空间中学习实体和关系的跨语言转换,其中考虑了以下三种跨语言对齐的表示:基于距离的轴校准,平移向量和线性变换。

2 Related Work

知识图谱嵌入:
基于推理的方法:TransE、TransH、TransR
非基于翻译的方法:UM、SE、Billined
基于神经的模型:SLM、NTN
基于随机行走的模型:TADW

多语种单词嵌入:LM、CCA、OT

知识库对齐:基于嵌入的方法

3 Multilingual Knowledge Graph Embedding

3.1 Multilingual Knowledge Graphs

L \mathcal L L: 语言的集合
L 2 \mathcal L^2 L2: 表示 L \mathcal L L的2-组合(无序语言对的集合)
语言 L ∈ L L \in \mathcal L LL G L G_L GL表示语言的专用知识图
E L E_L EL: 实体表示 R L R_L RL: 关系表示
T = ( h , r , t ) T=(h, r, t) T=(h,r,t)表示 G L G_L GL中的三元组 h , t ∈ E L r ∈ R L h,t\in E_L \quad r\in R_L h,tELrRL
语言对 ( L 1 , L 2 ) ∈ L 2 , δ ( L 1 , L 2 ) (L_1,L_2)\in \mathcal{L}^2, \delta(L_1,L_2) (L1,L2)L2,δ(L1,L2)表示包含已经在 L 1 L_1 L1 L 2 L_2 L2之间对齐的三元组对的集合

MTransE在知识库的两个方面进行学习:知识模型对来自每种语言特定的图结构的实体和关系进行编码,对齐模型从现有对齐学习跨语言转换。

3.2 Knowledge Model

损失函数:
S K = ∑ L ∈ { L i , L j } ∑ ( h , r , t ) ∈ G L ∥ h + r − t ∥ S_K=\sum_{L\in\{L_i,L_j\}}\sum_{(h, r, t)\in G_L}\|\mathrm{\mathbf h+\mathbf r -\mathbf t}\| SK=L{Li,Lj}(h,r,t)GLh+rt

3.3 Alignment Model

配准模型的目标是构造 L i L_i Li L j L_j Lj向量空间之间的转换。其损失函数如下:
S A = ∑ ( T , T ′ ) ∈ δ ( L i , L j ) S a ( T , T ′ ) S_A=\sum_{(T,T')\in\delta(L_i,L_j)}S_a(T,T') SA=(T,T)δ(Li,Lj)Sa(T,T)

对齐分数 S a ( T , T ′ ) S_a(T,T') Sa(T,T)迭代通过所有对齐的三元组。考虑了三种不同的对准评分技术:基于距离的轴校准、平移向量和线性变换。

基于距离的轴校准: 这种类型的对齐模型根据跨语言对应物的距离对对齐进行惩罚。
采用以下两种评分中的一种:
S a 1 = ∥ h − h ′ ∥ + ∥ t − t ′ ∥ S_{a_1}=\|\mathbf{h}-\mathbf{h}'\|+\|\mathbf{t}-\mathbf{t}'\| Sa1=hh+tt

S a 2 = ∥ h − h ′ ∥ + ∥ r − r ′ ∥ + ∥ t − t ′ ∥ S_{a_2}=\|\mathbf{h}-\mathbf{h}'\|+\|\mathbf{r}-\mathbf{r}'\|+\|\mathbf{t}-\mathbf{t}'\| Sa2=hh+rr+tt

S a 1 S_{a1} Sa1规定,同一实体的正确对齐的多语言表达往往具有紧密的嵌入向量。
S a 2 S_{a2} Sa2将关系对齐的惩罚叠加到 S a 1 S_{a1} Sa1​,以显式收敛相同关系的坐标。

基于轴校准的对齐模型假定每种语言中的条目在空间上的出现情况类似。因此,它通过将给定实体或关系的向量从原语的空间推进到另一种语言的空间来实现跨语言的转换。

平移向量: 该模型将跨语言转换编码为向量。它将对齐整合到图形结构中,并将跨语言转换描述为常规的关系翻译。
这样的模型通过添加对应的平移向量来获得嵌入向量的跨语言转换。
S a 3 = ∥ h + v i j e − h ′ ∥ + ∥ r + v i j r − r ′ ∥ + ∥ t + v i j e − t ′ ∥ S_{a_3}=\left\|\mathbf{h}+\mathbf{v}_{ij}^e-\mathbf{h}'\right\|+\left\|\mathbf{r}+\mathbf{v}_{ij}^r-\mathbf{r}'\right\|+\left\|\mathbf{t}+\mathbf{v}_{ij}^e-\mathbf{t}'\right\| Sa3= h+vijeh + r+vijrr + t+vijet
线性变换: 最后一类对齐模型推导出嵌入空间之间的线性变换。如下所示, S a 4 S_{a4} Sa4 k × k k\times k k×k方阵 M i j e M_{ij}^e Mije学习为从$ L_i$到 L j L_j Lj的实体向量的线性变换,给定 k为嵌入空间的维度。 S a 5 S_{a5} Sa5还引入了关系向量的第二线性变换 M i j r M_{ij}^r Mijr
与轴线校准不同,基于线性变换的对齐模型将跨语言转换视为嵌入空间的拓扑变换,而不假设空间涌现的相似性。
S a 4 = ∥ M i j e h − h ′ ∥ + ∥ M i j e t − t ′ ∥ S_{a_4}=\begin{Vmatrix}\mathbf{M}_{ij}^e\mathbf{h}-\mathbf{h}'\end{Vmatrix}+\begin{Vmatrix}\mathbf{M}_{ij}^e\mathbf{t}-\mathbf{t}'\end{Vmatrix} Sa4= Mijehh + Mijett

S a 5 = ∥ M i j e h − h ′ ∥ + ∥ M i j r r − r ′ ∥ + ∥ M i j e t − t ′ ∥ S_{a_5}=\left\|\mathbf{M}_{ij}^e\mathbf{h}-\mathbf{h}'\right\|+\left\|\mathbf{M}_{ij}^r\mathbf{r}-\mathbf{r}'\right\|+\left\|\mathbf{M}_{ij}^e\mathbf{t}-\mathbf{t}'\right\| Sa5= Mijehh + Mijrrr + Mijett

3.4 Variants of MTransE

结合上述两个分量模型,MTransE最小化如下损失函数 J = S K + α S A J=S_K + \alpha S_A J=SK+αSA,其中 α \alpha α是加权 S K S_K SK S A S_A SA的超参数。

image-20240328163920848

3.5 Training

使用在线随机梯度下降来优化损失函数: θ ← θ − λ ∇ θ J \theta \leftarrow \theta − \lambda\nabla_{\theta}J θθλθJ
θ ← θ − λ ∇ θ J \theta \leftarrow \theta − \lambda\nabla_{\theta}J θθλθJ θ ← θ − λ ∇ θ α S A \theta \leftarrow \theta − \lambda\nabla_{\theta}\alpha S_A θθλθαSA

强制任何实体嵌入向量的 l 2 l_2 l2范数为1的约束,从而将嵌入向量正则化到单位球面上:
(i)它有助于避免训练过程通过收缩嵌入向量的范数而使损失函数平凡地最小化的情况
(ii)它意味着 V a r 4 Var_4 Var4 V a r 5 Var_5 Var5​的线性变换的可逆性

4 Experiments

在两个跨语言任务上对所提出的方法进行评估:跨语言实体匹配和三对齐验证。为了显示MTransE的优势,将LM、CCA和OT改写为它们的知识图等效项。

数据集:WK31

4.1 Cross-lingual Entity Matching

跨语言实体匹配

此任务的目标是在知识库中匹配来自不同语言的相同实体。

评估协议: 每个MTransE变体都是在一个完整的数据集上进行训练的。

结果:

image-20240328171028854

4.2 Triple-wise Alignment Verification

三重对齐验证

这项任务是验证给定的一对对齐的三元组是否是真正的跨语言对应。

评估协议: 通过隔离 20% 的比对集来创建正例。随机破坏正例以生成负例。使用一种简单的基于阈值的分类器。

结果:

image-20240328181831133

4.3 Monolingual Tasks

单语任务

MTransE在处理跨语言任务方面具有很强的能力。MtransE很好地保留了单语知识的特征,在刻画单语关系方面,对齐模型对知识模型没有太大的干扰,但实际上可能会加强它,因为对齐模型统一了知识的连贯部分。

5 Conclusion and Future Work

语任务

MTransE在处理跨语言任务方面具有很强的能力。MtransE很好地保留了单语知识的特征,在刻画单语关系方面,对齐模型对知识模型没有太大的干扰,但实际上可能会加强它,因为对齐模型统一了知识的连贯部分。

5 Conclusion and Future Work

在跨语言实体匹配和三对齐验证任务上的大量实验表明,线性变换技术是这三种技术中最好的。此外,MTransE保留了单语知识图在单语任务中嵌入的关键特性。

深度学习小白,知识图谱方向,欢迎一起交流学习~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/497544.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

设计模式(一)简介

一、书籍推荐及博客 大话设计模式 设计模式的艺术 XXL开源社区 | 博客 二、通俗版概念 创建型模式、结构型模式、行为型模式 怎么建房子、建什么样的房子、建的房子有什么用 三、重点模式及简述 1、创建型模式 工厂方法(多态工厂的实现) 抽象工厂…

c++|string模拟实现

目录 一、string.h 二、string.cpp 三、Test.cpp 对string的各种接口进行一个简易版的模拟实现,在模拟实现完之后对string的底层实现有了进一步的理解,了解大佬的编程写法思路。也算是对string有了一个小总结。 一、string.h 接口的声明。放在.h文件中…

面向对象的学习

封装 //用来描述一类事物的类,专业叫做:javabean类 //在javabean类是不写main方法的//一个java文件中可以定义多个类,且只能一个类是public修饰,而且public修饰的类名必须成为代码的文件名 ://在类中一般无需指定初始化值 存在默…

C# OpenCvSharp 轮廓检测

目录 效果 代码 下载 效果 代码 using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Windows.Forms; using OpenCvSharp; using OpenCvSharp.…

理解JVM:从字节码到程序运行

大家好,我是程序员大猩猩。 今天我们来讲一下JVM,好多面试者在面试的时候,都会被问及JVM相关知识。那么JVM到底是什么,要理解它到底是出于什么原因? JVM俗称Java虚拟机,它是一个抽象的计算机,…

Hadoop面试重点

文章目录 1. Hadoop 常用端口号2.Hadoop特点3.Hadoop1.x、2.x、3.x区别 1. Hadoop 常用端口号 hadoop2.xhadoop3.x访问HDFS 端口500709870访问 MR 执行情况端口80888088历史服务器1988819888客户端访问集群端口90008020 2.Hadoop特点 高可靠:Hadoop底层维护多个数…

京东电商实时数据采集:京东数据API接口海量数据采集京东商品详情页SKU实时采集

京东数据api接口:京东电商数据如何采集? 用户行为日志采集 :这种方法通常用于记录用户在网站上的行为,如点击、浏览等,以帮助分析用户行为和优化用户体验。通用数据采集 :可以通过数据直通车等方式进行&am…

数字孪生关键技术及体系架构

摘要: 数字孪生以各领域日益庞大的数据为基本要素,借助发展迅速的建模仿真、人工智能、虚拟现实等先进技术,构建物理实体在虚拟空间中的数字孪生体,实现对物理实体的数字化管控与优化,开拓了企业数字化转型的可行思路…

SpringBoot+Prometheus+Grafana实现应用监控和报警

一、背景 SpringBoot的应用监控方案比较多&#xff0c;SpringBootPrometheusGrafana是目前比较常用的方案之一。它们三者之间的关系大概如下图&#xff1a; 关系图 二、开发SpringBoot应用 首先&#xff0c;创建一个SpringBoot项目&#xff0c;pom文件如下&#xff1a; <…

本地部署大模型的几种工具(上-相关使用)

目录 前言 为什么本地部署 目前的工具 vllm 介绍 下载模型 安装vllm 运行 存在问题 chatglm.cpp 介绍 下载 安装 运行 命令行运行 webdemo运行 GPU推理 ollama 介绍 下载 运行 运行不同参数量的模型 存在问题 lmstudio 介绍 下载 使用 下载模型文件…

Git版本管理使用手册 - 8 - 合并分支、解决冲突

合并整个开发分支 切换到本地test分支&#xff0c;选择右下角远程开发分支&#xff0c;选择Merge into Current。然后提交到远程test仓库。 合并某次提交的代码 当前工作区切换成test分支&#xff0c;选择远程仓库中的dev开发分支&#xff0c;选择需要合并的提交版本右击&a…

机器学习优化算法(深度学习)

目录 预备知识 梯度 Hessian 矩阵&#xff08;海森矩阵&#xff0c;或者黑塞矩阵&#xff09; 拉格朗日中值定理 柯西中值定理 泰勒公式 黑塞矩阵&#xff08;Hessian矩阵&#xff09; Jacobi 矩阵 优化方法 梯度下降法&#xff08;Gradient Descent&#xff09; 随机…

Hive-技术补充-ANTLR的真实语法世界

一、上下文 上一篇博客<Hive-技术补充-ANTLR语法编写>&#xff0c;我们了解了如何使用ANTLR语法来表达词法结构和语法结构&#xff0c;下面我们循循渐进的处理身边用过的一些文件或语言&#xff1a; CSV、JSON、DOT、Cymbol、R 二、解析CSV文件 有这样一份csv文件 …

【详细讲解PostCSS如何安装和使用】

&#x1f308;个人主页:程序员不想敲代码啊&#x1f308; &#x1f3c6;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家&#x1f3c6; &#x1f44d;点赞⭐评论⭐收藏 &#x1f91d; 希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提…

HarmonyOS 应用开发之UIAbility组件基本用法

UIAbility组件的基本用法包括&#xff1a;指定UIAbility的启动页面以及获取UIAbility的上下文 UIAbilityContext。 指定UIAbility的启动页面 应用中的UIAbility在启动过程中&#xff0c;需要指定启动页面&#xff0c;否则应用启动后会因为没有默认加载页面而导致白屏。可以在…

软件概要设计说明书word原件(实际项目)

一、 引言 &#xff08;一&#xff09; 编写目的 &#xff08;二&#xff09; 范围 &#xff08;三&#xff09; 文档约定 &#xff08;四&#xff09; 术语 二、 项目概要 &#xff08;一&#xff09; 建设背景 &#xff08;二&#xff09; 建设目标 &#xff08;三&a…

Jupyter开启远程服务器(最新版)

Jupyter Notebook 在本地进行访问时比较简单&#xff0c;直接在cmd命令行下输入 jupyter notebook 即可&#xff0c;然而notebook的作用不止于此&#xff0c;还可以用于远程连接服务器&#xff0c;这样如果你有一台服务器内存很大&#xff0c;但是呢你又不喜欢在linux上进行操作…

【文本】正则 | 正则表达式收录

1、匹配数字加右括号 1&#xff09;正则 \d\) 2&#xff09;效果 ~~

探索多种数据格式:JSON、YAML、XML、CSV等数据格式详解与比较

title: 探索多种数据格式&#xff1a;JSON、YAML、XML、CSV等数据格式详解与比较 date: 2024/3/28 17:34:03 updated: 2024/3/28 17:34:03 tags: 数据格式JSONYAMLXMLCSV数据交换格式比较 1. 数据格式介绍 数据格式是用于组织和存储数据的规范化结构&#xff0c;不同的数据格…

CSS(二)---【常见属性、复合属性使用】

零.前言 本篇文章主要阐述CSS常见属性、复合属性&#xff0c;更多前置知识请见作者其它文章&#xff1a; CSS(一)---【CSS简介、导入方式、八种选择器、优先级】-CSDN博客 1.CSS属性 CSS的属性有上百个&#xff0c;但是我们并不需要全部学习&#xff0c;只要我们学习一部分…