在操作系统导论作业中,我们需要用到HW文件。但是这个代码包中,所有.py文件都是py2格式的,需要我们修改为py3文件后运行,即将.py文件开头的
#! /usr/bin/env python
修改为:
#! /usr/bin/env python3
在前面小部分文件中,这样就解决问题了。但后续的大部分文件,包含了大量的print语句。众所周知,py2和py3的print语句格式是不一样的,后者比前者多了一个括号()。这时候不少同学就开始手动修改代码,这也不失为一种方法。但是,我们也可以使用一些神奇的库函数修改。
比如如下py2代码:
#! /usr/bin/env python
import sys
from optparse import OptionParser
import random
# finds the highest nonempty queue
# -1 if they are all empty
def FindQueue():
q = hiQueue
while q > 0:
if len(queue[q]) > 0:
return q
q -= 1
if len(queue[0]) > 0:
return 0
return -1
def Abort(str):
sys.stderr.write(str + '\n')
exit(1)
#
# PARSE ARGUMENTS
#
parser = OptionParser()
parser.add_option('-s', '--seed', help='the random seed',
default=0, action='store', type='int', dest='seed')
parser.add_option('-n', '--numQueues',
help='number of queues in MLFQ (if not using -Q)',
default=3, action='store', type='int', dest='numQueues')
parser.add_option('-q', '--quantum', help='length of time slice (if not using -Q)',
default=10, action='store', type='int', dest='quantum')
parser.add_option('-a', '--allotment', help='length of allotment (if not using -A)',
default=1, action='store', type='int', dest='allotment')
parser.add_option('-Q', '--quantumList',
help='length of time slice per queue level, specified as ' + \
'x,y,z,... where x is the quantum length for the highest ' + \
'priority queue, y the next highest, and so forth',
default='', action='store', type='string', dest='quantumList')
parser.add_option('-A', '--allotmentList',
help='length of time allotment per queue level, specified as ' + \
'x,y,z,... where x is the # of time slices for the highest ' + \
'priority queue, y the next highest, and so forth',
default='', action='store', type='string', dest='allotmentList')
parser.add_option('-j', '--numJobs', default=3, help='number of jobs in the system',
action='store', type='int', dest='numJobs')
parser.add_option('-m', '--maxlen', default=100, help='max run-time of a job ' +
'(if randomly generating)', action='store', type='int',
dest='maxlen')
parser.add_option('-M', '--maxio', default=10,
help='max I/O frequency of a job (if randomly generating)',
action='store', type='int', dest='maxio')
parser.add_option('-B', '--boost', default=0,
help='how often to boost the priority of all jobs back to ' +
'high priority', action='store', type='int', dest='boost')
parser.add_option('-i', '--iotime', default=5,
help='how long an I/O should last (fixed constant)',
action='store', type='int', dest='ioTime')
parser.add_option('-S', '--stay', default=False,
help='reset and stay at same priority level when issuing I/O',
action='store_true', dest='stay')
parser.add_option('-I', '--iobump', default=False,
help='if specified, jobs that finished I/O move immediately ' + \
'to front of current queue',
action='store_true', dest='iobump')
parser.add_option('-l', '--jlist', default='',
help='a comma-separated list of jobs to run, in the form ' + \
'x1,y1,z1:x2,y2,z2:... where x is start time, y is run ' + \
'time, and z is how often the job issues an I/O request',
action='store', type='string', dest='jlist')
parser.add_option('-c', help='compute answers for me', action='store_true',
default=False, dest='solve')
(options, args) = parser.parse_args()
random.seed(options.seed)
# MLFQ: How Many Queues
numQueues = options.numQueues
quantum = {}
if options.quantumList != '':
# instead, extract number of queues and their time slic
quantumLengths = options.quantumList.split(',')
numQueues = len(quantumLengths)
qc = numQueues - 1
for i in range(numQueues):
quantum[qc] = int(quantumLengths[i])
qc -= 1
else:
for i in range(numQueues):
quantum[i] = int(options.quantum)
allotment = {}
if options.allotmentList != '':
allotmentLengths = options.allotmentList.split(',')
if numQueues != len(allotmentLengths):
print('number of allotments specified must match number of quantums')
exit(1)
qc = numQueues - 1
for i in range(numQueues):
allotment[qc] = int(allotmentLengths[i])
if qc != 0 and allotment[qc] <= 0:
print('allotment must be positive integer')
exit(1)
qc -= 1
else:
for i in range(numQueues):
allotment[i] = int(options.allotment)
hiQueue = numQueues - 1
# MLFQ: I/O Model
# the time for each IO: not great to have a single fixed time but...
ioTime = int(options.ioTime)
# This tracks when IOs and other interrupts are complete
ioDone = {}
# This stores all info about the jobs
job = {}
# seed the random generator
random.seed(options.seed)
# jlist 'startTime,runTime,ioFreq:startTime,runTime,ioFreq:...'
jobCnt = 0
if options.jlist != '':
allJobs = options.jlist.split(':')
for j in allJobs:
jobInfo = j.split(',')
if len(jobInfo) != 3:
print('Badly formatted job string. Should be x1,y1,z1:x2,y2,z2:...')
print('where x is the startTime, y is the runTime, and z is the I/O frequency.')
exit(1)
assert(len(jobInfo) == 3)
startTime = int(jobInfo[0])
runTime = int(jobInfo[1])
ioFreq = int(jobInfo[2])
job[jobCnt] = {'currPri':hiQueue, 'ticksLeft':quantum[hiQueue],
'allotLeft':allotment[hiQueue], 'startTime':startTime,
'runTime':runTime, 'timeLeft':runTime, 'ioFreq':ioFreq, 'doingIO':False,
'firstRun':-1}
if startTime not in ioDone:
ioDone[startTime] = []
ioDone[startTime].append((jobCnt, 'JOB BEGINS'))
jobCnt += 1
else:
# do something random
for j in range(options.numJobs):
startTime = 0
runTime = int(random.random() * (options.maxlen - 1) + 1)
ioFreq = int(random.random() * (options.maxio - 1) + 1)
job[jobCnt] = {'currPri':hiQueue, 'ticksLeft':quantum[hiQueue],
'allotLeft':allotment[hiQueue], 'startTime':startTime,
'runTime':runTime, 'timeLeft':runTime, 'ioFreq':ioFreq, 'doingIO':False,
'firstRun':-1}
if startTime not in ioDone:
ioDone[startTime] = []
ioDone[startTime].append((jobCnt, 'JOB BEGINS'))
jobCnt += 1
numJobs = len(job)
print 'Here is the list of inputs:'
print 'OPTIONS jobs', numJobs
print 'OPTIONS queues', numQueues
for i in range(len(quantum)-1,-1,-1):
print 'OPTIONS allotments for queue %2d is %3d' % (i, allotment[i])
print 'OPTIONS quantum length for queue %2d is %3d' % (i, quantum[i])
print 'OPTIONS boost', options.boost
print 'OPTIONS ioTime', options.ioTime
print 'OPTIONS stayAfterIO', options.stay
print 'OPTIONS iobump', options.iobump
print '\n'
print 'For each job, three defining characteristics are given:'
print ' startTime : at what time does the job enter the system'
print ' runTime : the total CPU time needed by the job to finish'
print ' ioFreq : every ioFreq time units, the job issues an I/O'
print ' (the I/O takes ioTime units to complete)\n'
print 'Job List:'
for i in range(numJobs):
print ' Job %2d: startTime %3d - runTime %3d - ioFreq %3d' % (i, job[i]['startTime'],
job[i]['runTime'],
job[i]['ioFreq'])
print ''
if options.solve == False:
print 'Compute the execution trace for the given workloads.'
print 'If you would like, also compute the response and turnaround'
print 'times for each of the jobs.'
print ''
print 'Use the -c flag to get the exact results when you are finished.\n'
exit(0)
# initialize the MLFQ queues
queue = {}
for q in range(numQueues):
queue[q] = []
# TIME IS CENTRAL
currTime = 0
# use these to know when we're finished
totalJobs = len(job)
finishedJobs = 0
print '\nExecution Trace:\n'
while finishedJobs < totalJobs:
# find highest priority job
# run it until either
# (a) the job uses up its time quantum
# (b) the job performs an I/O
# check for priority boost
if options.boost > 0 and currTime != 0:
if currTime % options.boost == 0:
print '[ time %d ] BOOST ( every %d )' % (currTime, options.boost)
# remove all jobs from queues (except high queue) and put them in high queue
for q in range(numQueues-1):
for j in queue[q]:
if job[j]['doingIO'] == False:
queue[hiQueue].append(j)
queue[q] = []
# change priority to high priority
# reset number of ticks left for all jobs (just for lower jobs?)
# add to highest run queue (if not doing I/O)
for j in range(numJobs):
# print '-> Boost %d (timeLeft %d)' % (j, job[j]['timeLeft'])
if job[j]['timeLeft'] > 0:
# print '-> FinalBoost %d (timeLeft %d)' % (j, job[j]['timeLeft'])
job[j]['currPri'] = hiQueue
job[j]['ticksLeft'] = allotment[hiQueue]
# print 'BOOST END: QUEUES look like:', queue
# check for any I/Os done
if currTime in ioDone:
for (j, type) in ioDone[currTime]:
q = job[j]['currPri']
job[j]['doingIO'] = False
print '[ time %d ] %s by JOB %d' % (currTime, type, j)
if options.iobump == False or type == 'JOB BEGINS':
queue[q].append(j)
else:
queue[q].insert(0, j)
# now find the highest priority job
currQueue = FindQueue()
if currQueue == -1:
print '[ time %d ] IDLE' % (currTime)
currTime += 1
continue
# there was at least one runnable job, and hence ...
currJob = queue[currQueue][0]
if job[currJob]['currPri'] != currQueue:
Abort('currPri[%d] does not match currQueue[%d]' % (job[currJob]['currPri'], currQueue))
job[currJob]['timeLeft'] -= 1
job[currJob]['ticksLeft'] -= 1
if job[currJob]['firstRun'] == -1:
job[currJob]['firstRun'] = currTime
runTime = job[currJob]['runTime']
ioFreq = job[currJob]['ioFreq']
ticksLeft = job[currJob]['ticksLeft']
allotLeft = job[currJob]['allotLeft']
timeLeft = job[currJob]['timeLeft']
print '[ time %d ] Run JOB %d at PRIORITY %d [ TICKS %d ALLOT %d TIME %d (of %d) ]' % \
(currTime, currJob, currQueue, ticksLeft, allotLeft, timeLeft, runTime)
if timeLeft < 0:
Abort('Error: should never have less than 0 time left to run')
# UPDATE TIME
currTime += 1
# CHECK FOR JOB ENDING
if timeLeft == 0:
print '[ time %d ] FINISHED JOB %d' % (currTime, currJob)
finishedJobs += 1
job[currJob]['endTime'] = currTime
# print 'BEFORE POP', queue
done = queue[currQueue].pop(0)
# print 'AFTER POP', queue
assert(done == currJob)
continue
# CHECK FOR IO
issuedIO = False
if ioFreq > 0 and (((runTime - timeLeft) % ioFreq) == 0):
# time for an IO!
print '[ time %d ] IO_START by JOB %d' % (currTime, currJob)
issuedIO = True
desched = queue[currQueue].pop(0)
assert(desched == currJob)
job[currJob]['doingIO'] = True
# this does the bad rule -- reset your tick counter if you stay at the same level
if options.stay == True:
job[currJob]['ticksLeft'] = quantum[currQueue]
job[currJob]['allotLeft'] = allotment[currQueue]
# add to IO Queue: but which queue?
futureTime = currTime + ioTime
if futureTime not in ioDone:
ioDone[futureTime] = []
print 'IO DONE'
ioDone[futureTime].append((currJob, 'IO_DONE'))
# CHECK FOR QUANTUM ENDING AT THIS LEVEL (BUT REMEMBER, THERE STILL MAY BE ALLOTMENT LEFT)
if ticksLeft == 0:
if issuedIO == False:
# IO HAS NOT BEEN ISSUED (therefor pop from queue)'
desched = queue[currQueue].pop(0)
assert(desched == currJob)
job[currJob]['allotLeft'] = job[currJob]['allotLeft'] - 1
if job[currJob]['allotLeft'] == 0:
# this job is DONE at this level, so move on
if currQueue > 0:
# in this case, have to change the priority of the job
job[currJob]['currPri'] = currQueue - 1
job[currJob]['ticksLeft'] = quantum[currQueue-1]
job[currJob]['allotLeft'] = allotment[currQueue-1]
if issuedIO == False:
queue[currQueue-1].append(currJob)
else:
job[currJob]['ticksLeft'] = quantum[currQueue]
job[currJob]['allotLeft'] = allotment[currQueue]
if issuedIO == False:
queue[currQueue].append(currJob)
else:
# this job has more time at this level, so just push it to end
job[currJob]['ticksLeft'] = quantum[currQueue]
if issuedIO == False:
queue[currQueue].append(currJob)
# print out statistics
print ''
print 'Final statistics:'
responseSum = 0
turnaroundSum = 0
for i in range(numJobs):
response = job[i]['firstRun'] - job[i]['startTime']
turnaround = job[i]['endTime'] - job[i]['startTime']
print ' Job %2d: startTime %3d - response %3d - turnaround %3d' % (i, job[i]['startTime'],
response, turnaround)
responseSum += response
turnaroundSum += turnaround
print '\n Avg %2d: startTime n/a - response %.2f - turnaround %.2f' % (i,
float(responseSum)/numJobs,
float(turnaroundSum)/numJobs)
print '\n'
如果直接在终端运行,不修改print语句的话,会报这种错误:
可以打开Pycharm,把代码全部复制过去(注意选择Ctrl+Alt+Shift+V,即无格式文本粘贴,不然会出现自动换行现象),然后使用2to3命令:
如果没安装的uu可以安装一下
pip install 2to3
然后再Pycharm终端输入:
2to3 -w your_script.py
其中,your_script为你的新py文件名称。
新的py3文件就生成好啦!
#! /usr/bin/env python3
import sys
from optparse import OptionParser
import random
# finds the highest nonempty queue
# -1 if they are all empty
def FindQueue():
q = hiQueue
while q > 0:
if len(queue[q]) > 0:
return q
q -= 1
if len(queue[0]) > 0:
return 0
return -1
def Abort(str):
sys.stderr.write(str + '\n')
exit(1)
#
# PARSE ARGUMENTS
#
parser = OptionParser()
parser.add_option('-s', '--seed', help='the random seed',
default=0, action='store', type='int', dest='seed')
parser.add_option('-n', '--numQueues',
help='number of queues in MLFQ (if not using -Q)',
default=3, action='store', type='int', dest='numQueues')
parser.add_option('-q', '--quantum', help='length of time slice (if not using -Q)',
default=10, action='store', type='int', dest='quantum')
parser.add_option('-a', '--allotment', help='length of allotment (if not using -A)',
default=1, action='store', type='int', dest='allotment')
parser.add_option('-Q', '--quantumList',
help='length of time slice per queue level, specified as ' + \
'x,y,z,... where x is the quantum length for the highest ' + \
'priority queue, y the next highest, and so forth',
default='', action='store', type='string', dest='quantumList')
parser.add_option('-A', '--allotmentList',
help='length of time allotment per queue level, specified as ' + \
'x,y,z,... where x is the # of time slices for the highest ' + \
'priority queue, y the next highest, and so forth',
default='', action='store', type='string', dest='allotmentList')
parser.add_option('-j', '--numJobs', default=3, help='number of jobs in the system',
action='store', type='int', dest='numJobs')
parser.add_option('-m', '--maxlen', default=100, help='max run-time of a job ' +
'(if randomly generating)', action='store', type='int',
dest='maxlen')
parser.add_option('-M', '--maxio', default=10,
help='max I/O frequency of a job (if randomly generating)',
action='store', type='int', dest='maxio')
parser.add_option('-B', '--boost', default=0,
help='how often to boost the priority of all jobs back to ' +
'high priority', action='store', type='int', dest='boost')
parser.add_option('-i', '--iotime', default=5,
help='how long an I/O should last (fixed constant)',
action='store', type='int', dest='ioTime')
parser.add_option('-S', '--stay', default=False,
help='reset and stay at same priority level when issuing I/O',
action='store_true', dest='stay')
parser.add_option('-I', '--iobump', default=False,
help='if specified, jobs that finished I/O move immediately ' + \
'to front of current queue',
action='store_true', dest='iobump')
parser.add_option('-l', '--jlist', default='',
help='a comma-separated list of jobs to run, in the form ' + \
'x1,y1,z1:x2,y2,z2:... where x is start time, y is run ' + \
'time, and z is how often the job issues an I/O request',
action='store', type='string', dest='jlist')
parser.add_option('-c', help='compute answers for me', action='store_true',
default=False, dest='solve')
(options, args) = parser.parse_args()
random.seed(options.seed)
# MLFQ: How Many Queues
numQueues = options.numQueues
quantum = {}
if options.quantumList != '':
# instead, extract number of queues and their time slic
quantumLengths = options.quantumList.split(',')
numQueues = len(quantumLengths)
qc = numQueues - 1
for i in range(numQueues):
quantum[qc] = int(quantumLengths[i])
qc -= 1
else:
for i in range(numQueues):
quantum[i] = int(options.quantum)
allotment = {}
if options.allotmentList != '':
allotmentLengths = options.allotmentList.split(',')
if numQueues != len(allotmentLengths):
print('number of allotments specified must match number of quantums')
exit(1)
qc = numQueues - 1
for i in range(numQueues):
allotment[qc] = int(allotmentLengths[i])
if qc != 0 and allotment[qc] <= 0:
print('allotment must be positive integer')
exit(1)
qc -= 1
else:
for i in range(numQueues):
allotment[i] = int(options.allotment)
hiQueue = numQueues - 1
# MLFQ: I/O Model
# the time for each IO: not great to have a single fixed time but...
ioTime = int(options.ioTime)
# This tracks when IOs and other interrupts are complete
ioDone = {}
# This stores all info about the jobs
job = {}
# seed the random generator
random.seed(options.seed)
# jlist 'startTime,runTime,ioFreq:startTime,runTime,ioFreq:...'
jobCnt = 0
if options.jlist != '':
allJobs = options.jlist.split(':')
for j in allJobs:
jobInfo = j.split(',')
if len(jobInfo) != 3:
print('Badly formatted job string. Should be x1,y1,z1:x2,y2,z2:...')
print('where x is the startTime, y is the runTime, and z is the I/O frequency.')
exit(1)
assert(len(jobInfo) == 3)
startTime = int(jobInfo[0])
runTime = int(jobInfo[1])
ioFreq = int(jobInfo[2])
job[jobCnt] = {'currPri':hiQueue, 'ticksLeft':quantum[hiQueue],
'allotLeft':allotment[hiQueue], 'startTime':startTime,
'runTime':runTime, 'timeLeft':runTime, 'ioFreq':ioFreq, 'doingIO':False,
'firstRun':-1}
if startTime not in ioDone:
ioDone[startTime] = []
ioDone[startTime].append((jobCnt, 'JOB BEGINS'))
jobCnt += 1
else:
# do something random
for j in range(options.numJobs):
startTime = 0
runTime = int(random.random() * (options.maxlen - 1) + 1)
ioFreq = int(random.random() * (options.maxio - 1) + 1)
job[jobCnt] = {'currPri':hiQueue, 'ticksLeft':quantum[hiQueue],
'allotLeft':allotment[hiQueue], 'startTime':startTime,
'runTime':runTime, 'timeLeft':runTime, 'ioFreq':ioFreq, 'doingIO':False,
'firstRun':-1}
if startTime not in ioDone:
ioDone[startTime] = []
ioDone[startTime].append((jobCnt, 'JOB BEGINS'))
jobCnt += 1
numJobs = len(job)
print('Here is the list of inputs:')
print('OPTIONS jobs', numJobs)
print('OPTIONS queues', numQueues)
for i in range(len(quantum)-1,-1,-1):
print('OPTIONS allotments for queue %2d is %3d' % (i, allotment[i]))
print('OPTIONS quantum length for queue %2d is %3d' % (i, quantum[i]))
print('OPTIONS boost', options.boost)
print('OPTIONS ioTime', options.ioTime)
print('OPTIONS stayAfterIO', options.stay)
print('OPTIONS iobump', options.iobump)
print('\n')
print('For each job, three defining characteristics are given:')
print(' startTime : at what time does the job enter the system')
print(' runTime : the total CPU time needed by the job to finish')
print(' ioFreq : every ioFreq time units, the job issues an I/O')
print(' (the I/O takes ioTime units to complete)\n')
print('Job List:')
for i in range(numJobs):
print(' Job %2d: startTime %3d - runTime %3d - ioFreq %3d' % (i, job[i]['startTime'],
job[i]['runTime'],
job[i]['ioFreq']))
print('')
if options.solve == False:
print('Compute the execution trace for the given workloads.')
print('If you would like, also compute the response and turnaround')
print('times for each of the jobs.')
print('')
print('Use the -c flag to get the exact results when you are finished.\n')
exit(0)
# initialize the MLFQ queues
queue = {}
for q in range(numQueues):
queue[q] = []
# TIME IS CENTRAL
currTime = 0
# use these to know when we're finished
totalJobs = len(job)
finishedJobs = 0
print('\nExecution Trace:\n')
while finishedJobs < totalJobs:
# find highest priority job
# run it until either
# (a) the job uses up its time quantum
# (b) the job performs an I/O
# check for priority boost
if options.boost > 0 and currTime != 0:
if currTime % options.boost == 0:
print('[ time %d ] BOOST ( every %d )' % (currTime, options.boost))
# remove all jobs from queues (except high queue) and put them in high queue
for q in range(numQueues-1):
for j in queue[q]:
if job[j]['doingIO'] == False:
queue[hiQueue].append(j)
queue[q] = []
# change priority to high priority
# reset number of ticks left for all jobs (just for lower jobs?)
# add to highest run queue (if not doing I/O)
for j in range(numJobs):
# print '-> Boost %d (timeLeft %d)' % (j, job[j]['timeLeft'])
if job[j]['timeLeft'] > 0:
# print '-> FinalBoost %d (timeLeft %d)' % (j, job[j]['timeLeft'])
job[j]['currPri'] = hiQueue
job[j]['ticksLeft'] = allotment[hiQueue]
# print 'BOOST END: QUEUES look like:', queue
# check for any I/Os done
if currTime in ioDone:
for (j, type) in ioDone[currTime]:
q = job[j]['currPri']
job[j]['doingIO'] = False
print('[ time %d ] %s by JOB %d' % (currTime, type, j))
if options.iobump == False or type == 'JOB BEGINS':
queue[q].append(j)
else:
queue[q].insert(0, j)
# now find the highest priority job
currQueue = FindQueue()
if currQueue == -1:
print('[ time %d ] IDLE' % (currTime))
currTime += 1
continue
# there was at least one runnable job, and hence ...
currJob = queue[currQueue][0]
if job[currJob]['currPri'] != currQueue:
Abort('currPri[%d] does not match currQueue[%d]' % (job[currJob]['currPri'], currQueue))
job[currJob]['timeLeft'] -= 1
job[currJob]['ticksLeft'] -= 1
if job[currJob]['firstRun'] == -1:
job[currJob]['firstRun'] = currTime
runTime = job[currJob]['runTime']
ioFreq = job[currJob]['ioFreq']
ticksLeft = job[currJob]['ticksLeft']
allotLeft = job[currJob]['allotLeft']
timeLeft = job[currJob]['timeLeft']
print('[ time %d ] Run JOB %d at PRIORITY %d [ TICKS %d ALLOT %d TIME %d (of %d) ]' % \
(currTime, currJob, currQueue, ticksLeft, allotLeft, timeLeft, runTime))
if timeLeft < 0:
Abort('Error: should never have less than 0 time left to run')
# UPDATE TIME
currTime += 1
# CHECK FOR JOB ENDING
if timeLeft == 0:
print('[ time %d ] FINISHED JOB %d' % (currTime, currJob))
finishedJobs += 1
job[currJob]['endTime'] = currTime
# print 'BEFORE POP', queue
done = queue[currQueue].pop(0)
# print 'AFTER POP', queue
assert(done == currJob)
continue
# CHECK FOR IO
issuedIO = False
if ioFreq > 0 and (((runTime - timeLeft) % ioFreq) == 0):
# time for an IO!
print('[ time %d ] IO_START by JOB %d' % (currTime, currJob))
issuedIO = True
desched = queue[currQueue].pop(0)
assert(desched == currJob)
job[currJob]['doingIO'] = True
# this does the bad rule -- reset your tick counter if you stay at the same level
if options.stay == True:
job[currJob]['ticksLeft'] = quantum[currQueue]
job[currJob]['allotLeft'] = allotment[currQueue]
# add to IO Queue: but which queue?
futureTime = currTime + ioTime
if futureTime not in ioDone:
ioDone[futureTime] = []
print('IO DONE')
ioDone[futureTime].append((currJob, 'IO_DONE'))
# CHECK FOR QUANTUM ENDING AT THIS LEVEL (BUT REMEMBER, THERE STILL MAY BE ALLOTMENT LEFT)
if ticksLeft == 0:
if issuedIO == False:
# IO HAS NOT BEEN ISSUED (therefor pop from queue)'
desched = queue[currQueue].pop(0)
assert(desched == currJob)
job[currJob]['allotLeft'] = job[currJob]['allotLeft'] - 1
if job[currJob]['allotLeft'] == 0:
# this job is DONE at this level, so move on
if currQueue > 0:
# in this case, have to change the priority of the job
job[currJob]['currPri'] = currQueue - 1
job[currJob]['ticksLeft'] = quantum[currQueue-1]
job[currJob]['allotLeft'] = allotment[currQueue-1]
if issuedIO == False:
queue[currQueue-1].append(currJob)
else:
job[currJob]['ticksLeft'] = quantum[currQueue]
job[currJob]['allotLeft'] = allotment[currQueue]
if issuedIO == False:
queue[currQueue].append(currJob)
else:
# this job has more time at this level, so just push it to end
job[currJob]['ticksLeft'] = quantum[currQueue]
if issuedIO == False:
queue[currQueue].append(currJob)
# print out statistics
print('')
print('Final statistics:')
responseSum = 0
turnaroundSum = 0
for i in range(numJobs):
response = job[i]['firstRun'] - job[i]['startTime']
turnaround = job[i]['endTime'] - job[i]['startTime']
print(' Job %2d: startTime %3d - response %3d - turnaround %3d' % (i, job[i]['startTime'],
response, turnaround))
responseSum += response
turnaroundSum += turnaround
print('\n Avg %2d: startTime n/a - response %.2f - turnaround %.2f' % (i,
float(responseSum)/numJobs,
float(turnaroundSum)/numJobs))
print('\n')