监控系统介绍

文章目录

  • 监控系统的分类
    • 日志类(logs)
    • 调用链类(tracing)
    • 度量类(metrics)
  • 监控系统的分层
  • 监控系统典型架构
    • 采集器
      • Telegraf
      • Exporters
      • Grafana-Agent
    • 时序库
      • OpenTSDB
      • InfluxDB
      • TDEngine
      • M3DB
      • VictoriaMetrics
      • TimescaleDB
      • Prometheus
    • 告警引擎
    • 数据展示

监控系统的分类

针对不同场景把监控系统分为三类,分别是:

  • 日志类
  • 调用链类
  • 度量类

日志类(logs)

通常我们在系统和业务级别上加入一些日志代码,记录一些日志信息,方便我们在发现问题的时候查找。

这些信息会与事件做相关,例如:用户登录,下订单,用户浏览某件商品,一小时以内的网关流量,用户平均响应时间等等。

这类以日志的记录和查询的解决方案比较多。比如 ELK 方案(Elasticsearch+Logstash+Kibana),使用ELK(Elasticsearch、Logstash、Kibana)+ Kafka/Redis/RabbitMQ 来搭建一个日志系统。

img

ELK 结合 Redis/Kafka/RabbitMQ 实现日志类监控

程序内部通过 Spring AOP 记录日志,Beats 收集日志文件,然后用 Kafka/Redis/RabbitMQ 将其发送给 Logstash,Logstash 再将日志写入 Elasticsearch。

最后,使用 Kibana 将存放在 Elasticsearch 中的日志数据显示出来,形式可以是实时数据图表。

调用链类(tracing)

对于服务较多的系统,特别是微服务系统。一次服务的调用有可能涉及到多个服务。A 调用 B,B 又要调用 C,好像一个链条一样,形成了服务调用链。

调用链就是记录一个请求经过所有服务的过程。请求从开始进入服务,经过不同的服务节点后,再返回给客户端,通过调用链参数来追踪全链路行为。从而知道请求在哪个环节出了故障,系统的瓶颈在哪儿。

这个可以了解下OpenTracing,不展开了。

业界也有比较成熟的方案,可以参考文章:

网易云音乐全链路跟踪系统实践

全链路监控Jaeger

主流微服务全链路监控系统实战

度量类(metrics)

说白了,就是描述某个被测主体在一段时间内的测量值变化(度量)。比如CPU、内存、网络情况等等。

这里一般依赖时序数据库(TimeSeriesData,TSD)。

监控系统的分层

用户请求到数据返回,经历系统中的层层关卡。

img

一般我们将监控系统分为五层来考虑,当然也有人分成三层,大致的意思都差不多,仅供参考:

  • 客户端监控,用户行为信息,业务返回码,客户端性能,运营商,版本,操作系统等。
  • 业务层监控,核心业务的监控,例如:登录,注册,下单,支付等等。
  • 应用层监控,相关的技术参数,例如:URL 请求次数,Service 请求数量,SQL 执行的结果,Cache 的利用率,QPS 等等。
  • 系统层监控,物理主机,虚拟主机以及操作系统的参数。例如:CPU 利用率,内存利用率,磁盘空间情况。
  • 网络层监控,网络情况参数。例如:网关流量情况,丢包率,错包率,连接数等等。

监控系统典型架构

在这里插入图片描述

​ 从上图来看,从左往右,监控数据的采集,采集到的数据一般是写入时序库,然后就是对时序库中的数据进行分析和可视化,分析部分最经典做法就是告警规则判断(复杂一些的做会引入统计算法和机器学习的能力做预判),也就是上图中的告警引擎,告警引擎产生告警事件之后交给告警发送模块做不同媒介的通知。可视化就比较好理解,即图上的数据展示,通过各种图表来合理地渲染各类监控数据,便于用户查看比较、日常巡检。

采集器

​ 采集器负责采集监控数据,有两种典型部署方式,一种是跟随监控对象部署,常见做法是所有机器都部署一个采集器采集机器的 CPU、内存、硬盘、IO、网络相关的指标;另一种是远程探针式,比如选取一个中心机器做探针,同时探测很多个机器的 PING 连通性,或者连到很多 MySQL 实例上去,执行命令采集数据。

​ 下面我们就介绍几个典型的开源采集器:

Telegraf

​ Telegraf 是 InfluxData 公司的产品,开源协议是 MIT,非常开放,有很多外部贡献者,主要配合 InfluxDB 使用。当然,Telegraf 也可以把监控数据推给 Prometheus、Graphite、Datadog、OpenTSDB 等很多其他存储,但和 InfluxDB 的对接是最丝滑的。

​ InfluxDB 支持存储字符串,而 Telegraf 采集的很多数据都是字符串类型,但如果把这类数据推给 Prometheus 生态的时序库,比如 VictoriaMetrics、M3DB、Thanos 等,它就会报错。因为这些时序库只能存储数值型时序数据。另外,Telegraf 采集的很多数据在成功和失败的时候会打上不同的标签,比如成功的时候会打上 result=success 标签,失败的时候打上 result=failed 标签。

​ 在 InfluxDB 中这种情况是可以的,但是在 Prometheus 生态里,标签变化就表示不同的指标,这种情况我叫它标签非稳态结构,使用 Prometheus 生态的时序库与 Telegraf 对接时需要把这类标签丢弃掉。

​ Telegraf 是指标领域的 All-In-One 采集器,支持各种采集插件,只需要使用 Telegraf 这一个采集器,就能解决绝大部分采集需求

Exporters

​ Exporter 是专门用于 Prometheus 生态的组件,Prometheus 生态的采集器比较零散,每个采集目标都有对应的 Exporter 组件,比如 MySQL 有 mysqld_exporter,Redis 有 redis_exporter,交换机有 snmp_exporter,JVM 有 jmx_exporter。

​ 这些 Exporter 的核心逻辑,就是去这些监控对象里采集数据,然后暴露为 Prometheus 协议的监控数据。比如 mysqld_exporter,就是连上 MySQL,执行一些类似于 show global status 、show global variables 、show slave status 这样的命令,拿到输出,再转换为 Prometheus 协议的数据;还有 redis_exporter,它是连上 Redis,执行一些类似于 info 的命令,拿到输出,转换为 Prometheus 协议的数据。

​ 随着 Prometheus 的影响越来越大,很多中间件都内置支持了 Prometheus,直接通过自身的 /metrics 接口暴露监控数据,不用再单独伴生 Exporter,简化了架构。比如 Kubernetes 中的各类组件:kube-apiserver、kube-proxy、kube-scheduler 等等,比如 etcd,还有新版本的 ZooKeeper、 RabbitMQ、HAProxy,都可以直接暴露 Prometheus 协议的监控数据,无需 Exporter。

​ 不管是 Exporter 还是直接内置支持 Prometheus 协议的各类组件,都提供 HTTP 接口(通常是 /metrics )来暴露监控数据,让监控系统来拉,这叫做 PULL 模型。而像 Telegraf 那种则是 PUSH 模型,采集了数据之后调用服务端的接口来推送数据。

Grafana-Agent

​ Grafana-Agent 是 Grafana 公司推出的一款 All-In-One 采集器,不但可以采集指标数据,也可以采集日志数据和链路数据。开源协议是 Apache 2.0,比较开放。

​ Grafana-Agent 作为后来者,是如何快速集成各类采集能力的呢?Grafana-Agent 写了个框架,方便导入各类 Exporter,把各个 Exporter 当做 Lib 使用,常见的 Node-Exporter、Kafka-Exporter、Elasticsearch-Exporter、Mysqld-Exporter 等,都已经完成了集成。这样我们就不用到处去找各类 Exporter,只使用 Grafana-Agent 这一个二进制就可以搞定众多采集能力了。

​ Grafana-Agent 这种集成 Exporter 的方式,完全兼容 Exporter 的指标体系,比如 Node-Exporter。如果我们的场景不方便使用 PULL 的方式来抓取数据,就可以换成 Grafana-Agent,采用 PUSH 的方式推送监控数据,完全兼容 Node-Exporter 的指标。当然,Exporter 种类繁多,Grafana-Agent 不可能全部集成,对于默认没有集成进去的 Exporter,Grafana-Agent 也支持用 PULL 的方式去抓取其他 Exporter 的数据,然后再通过 Remote Write 的方式,将采集到的数据转发给服务端。

​ 对于日志采集,Grafana-Agent 集成了 Loki 生态的日志采集器 Promtail。对于链路数据,Grafana-Agent 集成了 OpenTelemetry Collector。相当于把可观测性三大支柱的采集能力都建全了。一个 Agent 搞定所有采集能力有个显而易见的好处,就是便于附加一些通用标签,比如某个机器的所有可观测性数据,都统一打上机器名的标签,后面就可以使用这种统一的标签做关联查询,这个关联能力是这类 All-In-One 采集器带来的最大好处。

采集器优点缺点推荐场景
telegraf指标方面全家桶方案不太适合prometgeus生态,资深高手通过配置可规避这些问题与influxDB一起作为机器的统一的agent使用
Exporters生态庞大,所有指标场景计划全部都exporters不同的exporter水平参差不齐kubernetes生态,或sidecar部署模式的场合kubernetes生态,或sidecar部署模式的场合
garfana-agent指标、日志、链路全部支持大一统方案集成的采集器不全,和监控目标之间仍然是一对一的,同时采集多个监控目标的时候,不太方便。kubernetes生态,或sidecar部署模式的场合

时序库

​ 监控系统的架构中,最核心的就是时序库。老一些的监控系统直接复用关系型数据库,比如 Zabbix 直接使用 MySQL 存储时序数据,MySQL 擅长处理事务场景,没有针对时序场景做优化,容量上有明显的瓶颈。Open-Falcon 是用 RRDtool 攒了一个分布式存储组件 Falcon-Graph,但是 RRDTool 本身的设计就有问题,散文件很多,对硬盘的 IO 要求太高,性能较差。Falcon-Graph 是分布式的,可以通过堆机器来解决大规模的问题,但显然不是最优解。

​ 后来,各种专门解决时序存储问题的数据库横空出世,比较有代表性的有:OpenTSDB、InfluxDB、TDEngine、M3DB、VictoriaMetrics、TimescaleDB 等。下面我们逐一介绍一下。

OpenTSDB

​ OpenTSDB 出现得较早,2010 年左右就有了,OpenTSDB 的指标模型有别于老一代监控系统死板的模型设计,它非常灵活,给业界带来了非常好的引导。

​ OpenTSDB 是基于 HBase 封装的,后来持续发展,也有了基于 Cassandra 封装的版本。你可以看一下它的架构图。由于底层存储是基于 HBase 的,一般小公司都玩不转,在国内的受众相对较少,当下再选型时序数据库时,就已经很少有人会选择 OpenTSDB 了。

InfluxDB

​ InfluxDB 来自 InfluxData,是一个创业公司做的项目,2019 年 D 轮融资 6000 万美金,所以开发人员不担心养家糊口的问题,做的产品还是非常不错的。

​ InfluxDB 针对时序存储场景专门设计了存储引擎、数据结构、存取接口,国内使用范围比较广泛,而且 InfluxDB 可以和 Grafana、Telegraf 等良好整合,生态是非常完备的。不过 InfluxDB 开源版本是单机的,没有开源集群版本。毕竟是商业公司,需要赚钱实现良性发展,这个点是需要我们斟酌的。

TDEngine

​ TDEngine 姑且可以看做是国产版 InfluxDB,GitHub 的 Star 数上万,针对物联网设备的场景做了优化,性能很好,也可以和 Grafana、Telegraf 整合,对于偏设备监控的场景,TDEngine 是个不错的选择。

​ TDEngine 的集群版是开源的,相比 InfluxDB,TDEngine 这点很有吸引力。TDEngine 不止是做时序数据存储,还内置支持了流式计算,可以让用户少部署一些组件。

image-20230510114318879

​ 你可能比较关注 TDEngine 是否可以和 Prometheus 生态良好打通。通过 TDEngine 的官网可以得知,TDEngine 是支持 Prometheus 的 remote_read 和 remote_write 接口的。不过不支持 Prometheus 的 Query 类接口,这点需要注意。

M3DB

​ M3DB 是来自 Uber 的时序数据库,M3 声称在 Uber 抗住了 66 亿监控指标,这个量非常庞大。而且 M3DB 是全开源的,包括集群版,不过架构原理比较复杂,CPU 和内存占用较高,在国内没有大规模推广起来。M3DB 的架构代码中包含很多分布式系统设计的知识,是个可以拿来学习的好项目。

VictoriaMetrics

​ VictoriaMetrics,简称 VM,架构非常简单清晰,采用 merge read 方式,避免了数据迁移问题,搞一批云上虚拟机,挂上云硬盘,部署 VM 集群,使用单副本,是非常轻量可靠的集群方式。

​ VM 实现了 Prometheus 的 Query 类接口,即 /api/v1/query、/api/v1/query_range、/api/v1/label//values 相关的接口,是 Prometheus 一个非常好的 Backend,甚至可以说是 Prometheus 的一个替代品。其实 VM 的初衷就是想要替换掉 Prometheus 的。

TimescaleDB

​ TimescaleDB 是 timescale.inc 开发的一款时序数据库,作为一个 PostgreSQL 的扩展提供服务。

​ 它是基于 PostgreSQL 设计而成的,而 PostgreSQL 生态四十年的积累,就是巨人的肩膀,很多底层的工作 PostgreSQL 其实已经完成了。就拿保障数据安全来说吧,因为程序可能随时会崩溃,服务器可能会遇到电源问题或硬件故障,磁盘可能损坏或者夯住,这些极端场景都需要完善的解决方案来处理。PostgreSQL 社区已经有了现成的高可用特性,包括完善的流复制和只读副本、数据库快照功能、增量备份和任意时间点恢复、wal 支持、快速导入导出工具等。而其他时序库,这些问题都要从头解决。

​ 但是传统数据库是基于 btree 做索引的,数据量到百亿或者千亿行,btree 会大到内存都存不下,产生频繁的磁盘交换,数据库性能会显著下降。另外,时序数据的写入量特别大,PostgreSQL 面对大量的插入,性能也不理想。TimescaleDB 就要解决这些问题。目前 Zabbix 社区在尝试对接到 TimescaleDB,不过国内应用案例还比较少。

Prometheus

随着这几年云环境的发展,Prometheus 被广泛地认可。它的本质是时间序列数据库。Prometheus 能够很好地支持大量数据的写入。

它采用拉的模式(Pull)从应用中拉取数据,并通过 Alert 模块实现监控预警。据说单机可以消费百万级时间序列。

告警引擎

​ 告警引擎的核心职责是处理告警规则,生成告警事件。通常来说,用户会配置数百甚至数千条告警规则,一些超大型公司可能需要配置数万条告警规则。每个规则里含有数据过滤条件、阈值、执行频率等,有一些配置丰富的监控系统,还支持配置规则生效时段、持续时长、留观时长等。

​ 告警引擎通常有两种架构,一种是数据触发式,一种是周期轮询式。

​ 数据触发式,是指服务端接收到监控数据之后,除了存储到时序库,还会转发一份数据给告警引擎,告警引擎每收到一条监控数据,就要判断是否关联了告警规则,做告警判断。因为监控数据量比较大,告警规则的量也可能比较大,所以告警引擎是会做分片部署的,即部署多个实例。这样的架构,即时性很好,但是想要做指标关联计算就很麻烦,因为不同的指标哈希后可能会落到不同的告警引擎实例。

​ 周期轮询式,架构简单,通常是一个规则一个协程,按照用户配置的执行频率,周期性查询判断即可,因为是主动查询的,做指标关联计算就会很容易。像 Prometheus、Grafana 等,都是这样的架构。

​ 生成事件之后,通常是交给一个单独的模块来做告警发送,这个模块负责事件聚合、收敛,根据不同的条件发送给不同的接收者和不同的通知媒介。告警事件的处理,是一个非常通用的需求,而且非常零碎、复杂,每个监控系统都去实现一套,通常不会做得很完备。于是就有了专门处理这类需求的产品,最典型的比如 PagerDuty ,可以接收各类事件源的事件,用户就只需要在 PagerDuty 做 OnCall 响应即可,非常方便。

数据展示

​ 监控数据的可视化也是一个非常通用且重要的需求,业界做得最成功的当数 Grafana。

​ Grafana 采用插件式架构,可以支持不同类型的数据源,图表非常丰富,基本可以看做是开源领域的事实标准。很多公司的商业化产品中,甚至直接内嵌了 Grafana,可见它是多么流行。当然,Grafana 新版本已经修改了开源协议,使用 AGPLv3,这就意味着如果某公司的产品基于 Grafana 做了二次开发,就必须公开代码,有些厂商想要 Fork Grafana,然后进行闭源商业分发,就行不通了。

​ 监控数据可视化,通常有两类需求,一个是即时查询,一个是监控大盘(Dashboard)。即时查询是临时起意,比如线上有个问题,需要追查监控数据,还原现场排查问题,这就需要有个方便我们查看的指标浏览功能,快速找到想要的指标。监控大盘通常用于日常巡检和问题排查,由资深工程师创建,放置了一些特别值得重点关注的指标,一定程度上可以引发我们思考,具有很强的知识沉淀效果。如果想要了解某个组件的原理,这个组件的监控大盘通常可以带给你一些启发。


补充:

在这里插入图片描述

参考:
https://blog.csdn.net/Tiger_lin1/article/details/130712365
https://www.sohu.com/a/344073073_236714

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/494160.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

分享多种mfc100u.dll丢失的解决方法(一键修复DLL丢失的方法)

在使用电脑过程中,我们经常会遇到一些陌生的DLL文件,例如mfc100u.dll。这些DLL文件是动态链接库(Dynamic Link Libraries)的缩写,它们包含了可以被多个程序共享的代码和数据。今天,我们将深入探讨mfc100u.d…

基于云计算的前端资源管理系统的设计与实现

hello宝子们...我们是艾斯视觉擅长ui设计和前端开发10年经验!希望我的分享能帮助到您!如需帮助可以评论关注私信我们一起探讨!致敬感谢感恩! 随着互联网的快速发展,前端资源管理成为了一个重要的课题。本文旨在设计并实…

鸿蒙HarmonyOS应用开发之使用Node-API实现跨语言交互开发流程

使用Node-API实现跨语言交互,首先需要按照Node-API的机制实现模块的注册和加载等相关动作。 ArkTS/JS侧:实现C方法的调用。代码比较简单,import一个对应的so库后,即可调用C方法。 Native侧:.cpp文件,实现模…

electron打包桌面版.exe之vue项目踩坑(vue3+electron 解决打包后首页打开空白,打包后路由不跳转及请求不到后端数据等问题)

vue项目https://www.qingplus.cn/components-web/index打包桌面版问题集合 一、静态资源加载问题 npm run electron_dev桌面版运行后页面空白,内容未加载。 填坑: 打包配置要用相对路径 vite.config.ts文件中的base要改成./,之前加了项目…

systemd-journal(四)之systemd-journald.service

文章目录 写在前面概述描述流日志记录(Stream logging)日志命名空间(Journal Namespaces)信号 SignalsSIGUSR1SIGUSR2SIGRTMIN1 内核命令行 Kernel Command Linesystemd.journald.forward_to_syslogsystemd.journald.forward_to_k…

Xilinx IDDR及ODDR使用和仿真

平台:Vivado2018 官方相关文档,ug471_7Series_SelectIO.pdf 关于IDDR与ODDR Input DDR Resource(IDDR) 外部的数据在时钟的上下沿同时传输数据,我们可以使用IDDR原语将输入的单bit数据转化为2bit的数据输出。同时数据速率变为原来的二分之一…

gopher伪协议

基础知识 基本格式 基本格式&#xff1a;URL:gopher://<host>:<port>/<gopher-path>web也需要加端口号80gophert协议默认端口为70gopheri请求不转发第一个字符 get请求 问号&#xff08;&#xff1f;)需要转码为URL编码&#xff0c;也就是%3f回车换行要变…

【Linux】进程状态(R运行状态、S睡眠状态、D磁盘休眠状态、T停止状态、X死亡状态)

目录 01.运行状态 02.睡眠状态 03.磁盘睡眠状态 04.停止状态 05.死亡状态 进程的状态会随着操作系统的调度和外部事件的发生而不断地发生转换。例如&#xff0c;一个新创建的进程经过初始化后会进入就绪态&#xff0c;等待被调度执行&#xff1b;当调度器分配处理器资源给…

什么是物联网监控平台?部署物联网平台有什么作用?

随着物联网技术的飞速发展&#xff0c;越来越多的企业开始关注并投入到这一领域。物联网监控平台作为连接物理世界与数字世界的桥梁&#xff0c;正逐渐成为企业数字化转型的关键组件。今天&#xff0c;我们将深入探讨物联网监控平台的定义、部署物联网平台的作用&#xff0c;以…

OSPF-区域间路由计算

一、概述 前面学习了我们学习了Router-LSA和Network-LSA&#xff0c;它们都只能在区域内进行泛洪&#xff0c;而且我们之前一直主要是单区域学习。OSPF的核心是骨干区域Area 0&#xff0c;其它都为非骨干区域。但是在大型网络中&#xff0c;单区域OSPF会存在一定的问题&#xf…

数据处理库Pandas数据结构DataFrame

Dataframe是一种二维数据结构&#xff0c;数据以表格形式&#xff08;与Excel类似&#xff09;存储&#xff0c;有对应的行和列&#xff0c;如图3-3所示。它的每列可以是不同的值类型&#xff08;不像 ndarray 只能有一个 dtype&#xff09;。基本上可以把 DataFrame 看成是共享…

libVLC 视频抓图

Windows操作系统提供了多种便捷的截图方式&#xff0c;常见的有以下几种&#xff1a; 全屏截图&#xff1a;通过按下PrtSc键&#xff08;Print Screen&#xff09;&#xff0c;可以截取整个屏幕的内容。截取的图像会保存在剪贴板中&#xff0c;可以通过CtrlV粘贴到图片编辑工具…

【数据结构和算法初阶(c语言)】二叉树系列oj题目图文详解

目录 1.单值二叉树 2.判断两颗二叉树是否相同 3.二叉树的前序遍历 接口了解 4.判断一棵树是不是另外一棵树的子树 5.判断一棵树是不是对称二叉树 6.二叉树遍历 1.单值二叉树 . - 力扣&#xff08;LeetCode&#xff09; 如果二叉树每个节点都具有相同的值&#xff0c;那么该二…

Pillow教程07:调整图片的亮度+对比度+色彩+锐度

---------------Pillow教程集合--------------- Python项目18&#xff1a;使用Pillow模块&#xff0c;随机生成4位数的图片验证码 Python教程93&#xff1a;初识Pillow模块&#xff08;创建Image对象查看属性图片的保存与缩放&#xff09; Pillow教程02&#xff1a;图片的裁…

uniapp流浪动物救助小程序Java宠物领养小程序springboot

uniapp流浪动物救助小程序Java宠物领养小程序springboot 代码40块&#xff0c;需要的私聊 前台基于uniapp小程序 后台管理基于springbootvue前后端分离项目 开发语言&#xff1a;Java 框架&#xff1a;springboot vue JDK版本&#xff1a;JDK1.8&#xff08;或11&#xf…

Sentinel源码解析

核心源码都在客户端,服务端只是个Dashboard!!! 在服务端配置好规则后,服务端会把规则推到客户端里去【存在客户端内存里】 服务端记录客户端对外提供的一些接口 客户端引用了依赖并启动后,会定时把自己的信息注册到Sentinel服务端去,并且定时发信息保持心跳 主线 注解…

vue2项目设置浏览器标题title及图标logo

工作中肯定会遇到要修改网页的标题title及图标logo 一、固定设置标题方案 方法一&#xff1a;在vue.config.js文件&#xff0c;添加如下代码&#xff1a; chainWebpack: config > {// 配置网页标题config.plugin(html).tap((args) > {args[0].title 标题return args})…

CV领域 交叉注意力(Cross Attention)中QKV的含义理解

交叉注意力公式&#xff1a; 注意力的输入&#xff1a; &#xff08;1&#xff09;KV&#xff1a;图像的全局特征 &#xff08;2&#xff09;Q&#xff1a;告诉attention需要关注哪些重要特征 公式计算过程理解&#xff1a; &#xff08;1&#xff09;&#xff1a;Q和K相乘…

【C++入门】 初见,单推,与C++的第一次约会

关注小庄 顿顿解馋(ᕑᗢᓫ∗)˒ 引言&#xff1a;本篇博客我们开始与C的第一次约会&#xff0c;C是兼容c的&#xff0c;本篇博客我们将了解到C关键字有哪些&#xff0c;C命名空间&#xff0c;C输入与输出和缺省参数的内容&#xff0c;请放心食用 ~ 文章目录 一 &#x1f3e0; C…

k8s入门到实战(七)—— 回顾:使用yaml文件配置pv、pvc、configmap部署mysql服务

实战&#xff1a;部署 mysql 服务 回顾加深 pv、pvc、configmap 删除所有 deployment、pv、pvc、configmap、StorageClass创建一个 nsf 挂载目录给 mysql mkdir -p /nfs/data/mysql创建 yaml 文件mysql-server.yaml # 创建pv apiVersion: v1 kind: PersistentVolume metadat…