引言
在【Redis教程0x06】中我们说到过,Redis的持久化有3种策略:RDB快照、AOF日志、RDB和AOF混合持久化。
本篇博客我们就将介绍一下AOF日志是怎么回事,以及混合持久化是怎么实现的。
AOF持久化
AOF日志
AOF是Append Only File的缩写,与RDB快照持久化相比,AOF的实时性更好。默认情况下Redis是没有开启AOF方式的持久化(Redis 6.0之后已经默认是开启了),可以通过appendonly
参数开启:
// redis.conf
appendonly yes // 表示是否开启AOF(默认为no)
appendfilename "appendonly.aof" // AOF持久化文件的名称
开启 AOF 持久化后, Redis 每执行一条**写操作(AOF记录下的是写操作,不会去记录读操作)**命令,就把该命令以追加的方式写入到一个文件里,然后重启 Redis 的时候,先去读取这个文件里的命令,并且执行它,这不就相当于恢复了缓存数据了。
AOF 日志文件其实就是普通的文本,我们可以通过 cat
命令查看里面的内容,不过里面的内容如果不知道一定的规则的话,可能会看不懂。
我们这里以 SET NAME IQ50
命令为例,Redis执行了这条命令,记录在AOF日志的内容如下:
给大家解释下。「*3」表示当前命令有三个部分,每部分都是以「$+数字」开头,后面紧跟着具体的命令、键或值。然后,这里的「数字」表示这部分中的命令、键或值一共有多少字节。例如,「$3 set」表示这部分有 3 个字节,也就是「set」命令这个字符串的长度。
根据第一张图我们知道,Redis 是先执行写操作命令到内存后,才将该命令记录到 AOF 日志里的,这么做其实有两个好处:
- 避免额外的检查开销。只有正确的命令才能被执行,写入数据到内存,这样能保证持久化到AOF日志里的命令都是正确可执行的,减少了校验的工作。
- 不会阻塞当前写操作命令的执行。因为只有当写操作执行成功后,才会进行日志记录的工作。
当然,AOF持久化也存在一定的风险:
- 执行写操作命令和记录日志是两个过程,那当 Redis 在还没来得及将命令写入到硬盘时,服务器发生宕机了,这个数据就会有丢失的风险。
- 由于写操作命令执行成功后才记录到 AOF 日志,所以不会阻塞当前写操作命令的执行,但是可能会给「下一个」命令带来阻塞风险。
上面的风险的产生,主要是因为写AOF日志的行为也是由主进程完成的。
如果在执行上图Step 2时,硬盘的IO压力大而阻塞住了,那么Redis主进程也就卡住了,可能导致后续的命令无法执行。
我们可以发现,压力主要来自于[AOF缓冲–>硬盘]这一步,所以AOF日志写回硬盘的时机至关重要。
三种写回策略
Redis写AOF日志的流程如下:
- Redis 执行完写操作命令后,会将命令追加到 server.aof_buf 缓冲区;
- 然后通过 write() 系统调用,将 aof_buf 缓冲区的数据写入到 AOF 文件,此时数据并没有写入到硬盘,而是拷贝到了内核缓冲区 page cache,等待内核将数据写入硬盘;
- 具体内核缓冲区的数据什么时候写入到硬盘,由内核决定;
Redis 提供了 3 种写回硬盘的策略,控制的就是上面说的第三步的过程。
在redis.conf
配置文件中的appendfsync
配置项可以有以下 3 种参数可填:
- Always:每次写操作命令执行完后,同步将 AOF 日志数据写回硬盘;
- Everysec:每次写操作命令执行完后,先将命令写入到 AOF 文件的内核缓冲区,然后每隔一秒将缓冲区里的内容写回到硬盘;
- No:不由 Redis 控制写回硬盘的时机,转交给操作系统控制写回的时机,也就是每次写操作命令执行完后,先将命令写入到 AOF 文件的内核缓冲区,再由操作系统决定何时将缓冲区内容写回硬盘。
上面的3种写回策略各有利弊,都无法同时完美解决"主进程阻塞"和"减少数据丢失"的问题,所以需要我们根据业务场景选择。
写回策略 | 写回时机 | 优点 | 缺点 |
---|---|---|---|
Always:高可靠 | 同步写回 | 可靠性高,最大程序保证数据不丢失 | 性能开销大 |
Everysec:适中 | 每秒写回 | 性能适中 | 宕机时最多丢失1s内的数据 |
No:高性能 | 由OS控制写回 | 性能好 | 宕机时可能丢失很多数据 |
深入源码,我们会发现三种策略只是在控制fsync()
函数的调用时机。
当应用程序向文件写入数据时,内核通常先将数据复制到内核缓冲区中,然后排入队列,然后由内核决定何时写入硬盘。
如果想要应用程序向文件写入数据后,能立马将数据同步到硬盘,就可以调用fsync()
函数,这样内核就会将内核缓冲区的数据直接写入到硬盘,等到硬盘写操作完成后,该函数才会返回。
- Always 策略就是每次写入 AOF 文件数据后,就执行 fsync() 函数;
- Everysec 策略就会创建一个异步任务来执行 fsync() 函数;
- No 策略就是永不执行 fsync() 函数;
AOF的重写机制
AOF 日志是一个文件,随着执行的写操作命令越来越多,文件的大小会越来越大。
如果当 AOF 日志文件过大就会带来性能问题,比如重启 Redis 后,需要读 AOF 文件的内容以恢复数据,如果文件过大,整个恢复的过程就会很慢。
所以,Redis 为了避免 AOF 文件越写越大,提供了 AOF 重写机制,当 AOF 文件的大小超过所设定的阈值后,Redis 就会启用 AOF 重写机制,来压缩 AOF 文件。
重写机制的具体实现:在重写时,读取当前数据库中的所有键值对,然后将每一个键值对用一条命令记录到「新的 AOF 文件」,等到全部记录完后,就将新的 AOF 文件替换掉现有的 AOF 文件。
举个例子,在重写机制工作前,AOF日志中存在先后两条命令:set name iq100
和set name iq50
。此时我们进行AOF重写,就会读取到name最新的value,然后只保存最新的命令set name iq50
即可。
重写工作完成后,就会将新的 AOF 文件覆盖现有的 AOF 文件,这就相当于压缩了 AOF 文件,使得 AOF 文件体积变小了。
总结一下,重写机制的妙处在于尽管某个键值对被多条写命令反复修改,最终也只需要根据这个「键值对」当前的最新状态,然后用一条命令去记录键值对,代替之前记录这个键值对的多条命令,这样就减少了 AOF 文件中的命令数量。最后在重写工作完成后,将新的 AOF 文件覆盖现有的 AOF 文件。
AOF后台重写
之前我们说过,写AOF日志的操作是在主进程完成的,因为写入的内容不多,一般不会影响命令的操作。
但是AOF重写时,就需要读取所有缓存的键值对数据,并为每个键值对生成一条对应的新命令,然后将其写入到新的AOF文件,再然后替换旧AOF文件。
这个过程听上去就是性能消耗很大的,所以重写并不在主进程中完成。
Redis 的重写 AOF 过程是由后台子进程 **bgrewriteaof**
来完成的,这么做可以达到两个好处:
- 子进程进行 AOF 重写期间,主进程可以继续处理命令请求,从而避免阻塞主进程;
- 子进程带有主进程的数据副本,这里使用子进程而不是线程,因为如果是使用线程,多线程之间会共享内存,那么在修改共享内存数据的时候,需要通过加锁来保证数据的安全,而这样就会降低性能。而使用子进程,创建子进程时,父子进程是共享内存数据的,不过这个共享的内存只能以只读的方式,而当父子进程任意一方修改了该共享内存,就会发生「写时复制」,于是父子进程就有了独立的数据副本,就不用加锁来保证数据安全。
子进程是怎么拥有主进程一样的数据副本的呢?
主进程在通过 fork 系统调用生成 bgrewriteaof 子进程时,操作系统会把主进程的「页表」复制一份给子进程,这个页表记录着虚拟地址和物理地址映射关系,而不会复制物理内存,也就是说,两者的虚拟空间不同,但其对应的物理空间是同一个。
这样一来,子进程就共享了父进程的物理内存数据了,这样能够节约物理内存资源,页表对应的页表项的属性会标记该物理内存的权限为只读。
不过,当父进程或者子进程在向这个内存发起写操作时,CPU 就会触发写保护中断,这个写保护中断是由于违反权限导致的,然后操作系统会在「写保护中断处理函数」里进行物理内存的复制,并重新设置其内存映射关系,将父子进程的内存读写权限设置为可读写,最后才会对内存进行写操作,这个过程被称为「写时复制(Copy On Write)」。
写时复制顾名思义,在发生写操作的时候,操作系统才会去复制物理内存,这样是为了防止 fork 创建子进程时,由于物理内存数据的复制时间过长而导致父进程长时间阻塞的问题。
当然,操作系统复制父进程页表的时候,父进程也是阻塞中的,不过页表的大小相比实际的物理内存小很多,所以通常复制页表的过程是比较快的。
不过,如果父进程的内存数据非常大,那自然页表也会很大,这时父进程在通过 fork 创建子进程的时候,阻塞的时间也越久。
所以,有两个阶段会导致阻塞父进程:
- 创建子进程的途中,由于要复制父进程的页表等数据结构,阻塞的时间跟页表的大小有关,页表越大,阻塞的时间也越长;
- 创建完子进程后,如果子进程或者父进程修改了共享数据,就会发生写时复制,这期间会拷贝物理内存,如果内存越大,自然阻塞的时间也越长;
让我们再来梳理一下后台重写的流程:触发重写机制后,主进程就会创建重写 AOF 的子进程,此时父子进程共享物理内存,重写子进程只会对这个内存进行只读,重写 AOF 子进程会读取数据库里的所有数据,并逐一把内存数据的键值对转换成一条命令,再将命令记录到重写日志(新的 AOF 文件)。
但是子进程重写过程中,主进程依然可以正常处理命令。
如果此时主进程修改了已经存在 key-value,就会发生写时复制,注意这里只会复制主进程修改的物理内存数据,没修改物理内存还是与子进程共享的。
所以如果这个阶段修改的是一个 bigkey,也就是数据量比较大的 key-value 的时候,这时复制的物理内存数据的过程就会比较耗时,有阻塞主进程的风险。
还有个问题,重写 AOF 日志过程中,如果主进程修改了已经存在 key-value,此时这个 key-value 数据在子进程的内存数据就跟主进程的内存数据不一致了,这时要怎么办呢?
为了解决这种数据不一致问题,Redis 设置了一个 AOF 重写缓冲区,这个缓冲区在创建 bgrewriteaof 子进程之后开始使用。在重写 AOF 期间,当 Redis 执行完一个写命令之后,它会同时将这个写命令写入到 「AOF 缓冲区」和 「AOF 重写缓冲区」。
也就是说,在 bgrewriteaof 子进程执行 AOF 重写期间,主进程需要执行以下三个工作:
- 执行客户端发来的命令;
- 将执行后的写命令追加到 「AOF 缓冲区」;
- 将执行后的写命令追加到 「AOF 重写缓冲区」;
当子进程完成 AOF 重写工作(扫描数据库中所有数据,逐一把内存数据的键值对转换成一条命令,再将命令记录到重写日志)后,会向主进程发送一条信号,信号是进程间通讯的一种方式,且是异步的。
主进程收到该信号后,会调用一个信号处理函数,该函数主要做以下工作:
- 将 AOF 重写缓冲区中的所有内容追加到新的 AOF 的文件中,使得新旧两个 AOF 文件所保存的数据库状态一致;
- 新的 AOF 的文件进行改名,覆盖现有的 AOF 文件。
信号函数执行完后,主进程就可以继续像往常一样处理命令了。
在整个 AOF 后台重写过程中,除了发生写时复制会对主进程造成阻塞,还有信号处理函数执行时也会对主进程造成阻塞,在其他时候,AOF 后台重写都不会阻塞主进程。
RDB和AOF合体
经过学习,我们知道RDB的优势是恢复速度快,AOF的优势是丢失数据少。有什么办法能结合两者优势呢?
在Redis 4.0提出了一种混合RDB快照和AOF日志的持久化方法。
要想开启混合持久化,需要修改以下配置文件:
aof-use-rdb-preamble yes
混合持久化工作在 AOF 日志重写过程。
当开启了混合持久化时,在 AOF 重写日志时,fork 出来的重写子进程会先将与主线程共享的内存数据以 RDB 方式写入到 AOF 文件,然后主线程处理的操作命令会被记录在重写缓冲区里,重写缓冲区里的增量命令会以 AOF 方式写入到 AOF 文件,写入完成后通知主进程将新的含有 RDB 格式和 AOF 格式的 AOF 文件替换旧的的 AOF 文件。
也就是说,使用了混合持久化,AOF 文件的前半部分是 RDB 格式的全量数据,后半部分是 AOF 格式的增量数据。
这样的好处在于,重启 Redis 加载数据的时候,由于前半部分是 RDB 内容,这样加载的时候速度会很快。
加载完 RDB 的内容后,才会加载后半部分的 AOF 内容,这里的内容是 Redis 后台子进程重写 AOF 期间,主线程处理的操作命令,可以使得数据更少的丢失。
Redis大key对持久化的影响
大Key对AOF日志的影响
在使用 Always 策略的时候,主线程在执行完命令后,会把数据写入到 AOF 日志文件,然后会调用 fsync() 函数,将内核缓冲区的数据直接写入到硬盘,等到硬盘写操作完成后,该函数才会返回。
当使用 Always 策略的时候,如果写入是一个大 Key,主线程在执行 fsync() 函数的时候,阻塞的时间会比较久,因为当写入的数据量很大的时候,数据同步到硬盘这个过程是很耗时的。
当使用 Everysec 策略的时候,由于是异步执行 fsync() 函数,所以大 Key 持久化的过程(数据同步磁盘)不会影响主线程。
当使用 No 策略的时候,由于永不执行 fsync() 函数,所以大 Key 持久化的过程不会影响主线程。
大Key对AOF重写和RDB的影响
当 AOF 日志写入了很多的大 Key,AOF 日志文件的大小会很大,那么很快就会触发 AOF 重写机制。
AOF 重写机制和 RDB 快照(bgsave 命令)的过程,都会分别通过 fork() 函数创建一个子进程来处理任务。
在创建子进程的过程中,操作系统会把父进程的「页表」复制一份给子进程,这个页表记录着虚拟地址和物理地址映射关系,而不会复制物理内存,也就是说,两者的虚拟空间不同,但其对应的物理空间是同一个。
随着 Redis 存在越来越多的大 Key,那么 Redis 就会占用很多内存,对应的页表就会越大。
在通过 fork() 函数创建子进程的时候,虽然不会复制父进程的物理内存,但是内核会把父进程的页表复制一份给子进程,如果页表很大,那么这个复制过程是会很耗时的,那么在执行 fork 函数的时候就会发生阻塞现象。
而且,fork 函数是由 Redis 主线程调用的,如果 fork 函数发生阻塞,那么意味着就会阻塞 Redis 主线程。由于 Redis 执行命令是在主线程处理的,所以当 Redis 主线程发生阻塞,就无法处理后续客户端发来的命令。
当我们fork耗时很大时,就要考虑进行优化了:
- 单个实例的内存占用控制在 10 GB 以下,这样 fork 函数就能很快返回。
- 如果 Redis 只是当作纯缓存使用,不关心 Redis 数据安全性问题,可以考虑关闭 AOF 和 AOF 重写,这样就不会调用 fork 函数了。
- 在主从架构中,要适当调大 repl-backlog-size,避免因为 repl_backlog_buffer 不够大,导致主节点频繁地使用全量同步的方式,全量同步的时候,是会创建 RDB 文件的,也就是会调用 fork 函数。
这里额外提一下, 如果 Linux 开启了内存大页,会影响 Redis 的性能的。
Linux 内核从 2.6.38 开始支持内存大页机制,该机制支持 2MB 大小的内存页分配,而常规的内存页分配是按 4KB 的粒度来执行的。
如果采用了内存大页,那么即使客户端请求只修改 100B 的数据,在发生写时复制后,Redis 也需要拷贝 2MB 的大页。相反,如果是常规内存页机制,只用拷贝 4KB。
两者相比,你可以看到,每次写命令引起的复制内存页单位放大了 512 倍,会拖慢写操作的执行时间,最终导致 Redis 性能变慢。
那该怎么办呢?很简单,关闭内存大页(默认是关闭的)。
总结
本篇博客我们详解了Redis持久化策略之AOF,同时也介绍了AOF和RDB混合的策略。