YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)

YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)

  • 前言
  • 前提条件
  • 相关介绍
  • 使用YOLOv5-7.0版本训练自己的实例分割模型
    • YOLOv5项目官方源地址
    • 下载yolov5-7.0版源码
      • 解压
      • 目录结构
    • 准备实例分割数据集
    • 在./data目录下,新建myseg.yaml配置文件
    • 训练分割模型
      • 解决‘ImportError: Failed to initialize: Bad git executable.’
      • 解决方法
    • 验证分割模型
      • BoxPR_curve
      • MaskPR_curve
    • 测试分割模型
  • 参考

前言

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入YOLO系列专栏或我的个人主页查看
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测

前提条件

  • 熟悉Python

相关介绍

  • Python是一种跨平台的计算机程序设计语言。是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
  • PyTorch 是一个深度学习框架,封装好了很多网络和深度学习相关的工具方便我们调用,而不用我们一个个去单独写了。它分为 CPU 和 GPU 版本,其他框架还有 TensorFlow、Caffe 等。PyTorch 是由 Facebook 人工智能研究院(FAIR)基于 Torch 推出的,它是一个基于 Python 的可续计算包,提供两个高级功能:1、具有强大的 GPU 加速的张量计算(如 NumPy);2、构建深度神经网络时的自动微分机制。
  • YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。它是一个在COCO数据集上预训练的物体检测架构和模型系列,代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。
  • 实例分割是指将图片中属于物体类别的像素识别出来并作分类。1 实例分割是视觉经典四个任务中相对最难的一个,它既具备语义分割(Semantic Segmentation)的特点,需要做到像素层面上的分类,也具备目标检测(Object Detection)的一部分特点,即需要定位出不同实例,即使它们是同一种类。
  • 本文数据集免费获取链接:https://download.csdn.net/download/FriendshipTang/88118028
  • 同时,也可以在本文开头获取,如下图所示。
    在这里插入图片描述

使用YOLOv5-7.0版本训练自己的实例分割模型

YOLOv5项目官方源地址

https://github.com/ultralytics/yolov5.git

下载yolov5-7.0版源码

在这里插入图片描述

在这里插入图片描述

解压

在这里插入图片描述

目录结构

在这里插入图片描述

准备实例分割数据集

在./data目录下,新建myseg.yaml配置文件

内容如下:

# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
# COCO128-seg dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Example usage: python train.py --data coco128.yaml
# parent
# ├── yolov5
# └── datasets
#     └── coco128-seg  ← downloads here (7 MB)


# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/myseg  # dataset root dir
train: ../myseg/trainset/images  # train images (relative to 'path') 128 images
val: ../myseg/valset/images  # val images (relative to 'path') 128 images
test: ../myseg/testset/images  # test images (optional)

# Classes
names:
  0: background
  1: car
  2: traffic_sign
  3: lane_lines
  4: person
  5: motorcyclist
  6: cyclist

在这里插入图片描述

训练分割模型

python segment/train.py --data data/myseg.yaml --weights yolov5s-seg.pt --img 640 --batch-size 16

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注:如果报显存溢出错误,可将batch-size调小。

解决‘ImportError: Failed to initialize: Bad git executable.’

Traceback (most recent call last):
  File "segment/train.py", line 66, in <module>
    GIT_INFO = check_git_info()
  File "D:\anaconda3\envs\test2\lib\contextlib.py", line 75, in inner
    return func(*args, **kwds)
  File "E:\mytest\yolov5-master\utils\general.py", line 360, in check_git_info
    import git
  File "D:\anaconda3\envs\test2\lib\site-packages\git\__init__.py", line 91, in <module>
    raise ImportError("Failed to initialize: {0}".format(exc)) from exc
ImportError: Failed to initialize: Bad git executable.
The git executable must be specified in one of the following ways:
    - be included in your $PATH
    - be set via $GIT_PYTHON_GIT_EXECUTABLE
    - explicitly set via git.refresh()

All git commands will error until this is rectified.

This initial warning can be silenced or aggravated in the future by setting the
$GIT_PYTHON_REFRESH environment variable. Use one of the following values:
    - quiet|q|silence|s|none|n|0: for no warning or exception
    - warn|w|warning|1: for a printed warning
    - error|e|raise|r|2: for a raised exception

Example:
    export GIT_PYTHON_REFRESH=quiet

解决方法

在train.py代码中,import os 后面添加了一行

os.environ["GIT_PYTHON_REFRESH"] = "quiet"

在这里插入图片描述

验证分割模型

python segment/val.py --weights runs\train-seg\exp\weights\best.pt --data data/myseg.yaml --img 640

在这里插入图片描述

BoxPR_curve

在这里插入图片描述

MaskPR_curve

在这里插入图片描述

测试分割模型

在这里插入图片描述

python segment/predict.py --weights runs/train-seg/exp/weights/best.pt --source test.jpg --img 640

在这里插入图片描述

在这里插入图片描述

参考

[1] https://github.com/ultralytics/yolov5

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入YOLO系列专栏或我的个人主页查看
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/49217.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Rust vs Go:常用语法对比(七)

题图来自 Go vs Rust: Which will be the top pick in programming?[1] 121. UDP listen and read Listen UDP traffic on port p and read 1024 bytes into buffer b. 听端口p上的UDP流量&#xff0c;并将1024字节读入缓冲区b。 import ( "fmt" "net&qu…

vue+leaflet笔记之地图聚合

vueleaflet笔记之地图聚合 文章目录 vueleaflet笔记之地图聚合开发环境代码简介插件简介与安装使用简介 详细源码(Vue3) 本文介绍了Web端使用Leaflet开发库进行地图聚合查询的一种方法 (底图来源:中科星图)&#xff0c;结合Leaflet.markercluster插件能够快速的实现地图聚合查询…

数据库数据恢复-Syabse数据库存储页底层数据杂乱的数据恢复案例

数据库恢复环境&#xff1a; Sybase版本&#xff1a;SQL Anywhere 8.0。 数据库故障&#xff1a; 数据库所在的设备意外断电后&#xff0c;数据库无法启动。 错误提示&#xff1a; 使用Sybase Central连接后报错&#xff1a; 数据库故障分析&#xff1a; 经过北亚企安数据恢复…

内存函数讲解

&#x1f495;"痛苦难以避免&#xff0c;而磨难可以选择。"-->村上春树&#x1f495; 作者&#xff1a;Mylvzi 文章主要内容&#xff1a;数据在内存中的存储 内存函数就是管理内存数据的函数&#xff0c;包含于头文件<string.h>中 1.memcpy函数-->内存…

机器学习——异常检测

异常点检测(Outlier detection)&#xff0c;⼜称为离群点检测&#xff0c;是找出与预期对象的⾏为差异较⼤的对象的⼀个检测过程。这些被检测出的对象被称为异常点或者离群点。异常点&#xff08;outlier&#xff09;是⼀个数据对象&#xff0c;它明显不同于其他的数据对象。异…

soft ip与hard ip

ip分soft和hard两种&#xff0c;soft就是纯代码&#xff0c;买过来要自己综合自己pr。hard ip如mem和analog与工艺有关。 mem的lib和lef是memory compiler产生的&#xff0c;基于bitcell&#xff0c;是foundry给的。 我正在「拾陆楼」和朋友们讨论有趣的话题&#xff0c;你⼀起…

pyspark 笔记 cast 转换列的类型

1 不借助 pyspark.sql.types from pyspark.sql.functions import coldata [("Alice", "28"), ("Bob", "22"), ("Charlie", "30")] columns ["name", "age_str"] df spark.createDataFram…

第一章 计算机网络概述

第一章 计算机网络概述 1.1 计算机网络在信息时代的作用 1.2 因特网概述 网络分类&#xff1a; 网络&#xff1a;许多计算机连接在一起的的局域网&#xff1b; 互联网&#xff1a;internet许多网络连接在一起&#xff1b; 因特网&#xff1a;Internet 全球最大的互联网&…

15.Netty源码之EventLoop

highlight: arduino-light Netty配置主从Reactor模式 通过将NioServerSocketChannel绑定到了bossGroup。 将NioServerSocketChannel接收到请求创建的SocketChannel放入workerGroup。 将2个不同的SocketChannel绑定到2个不同的Group完成了主从 Reactor 模式。 分配NIOEventLoop的…

【java安全】RMI

文章目录 【java安全】RMI前言RMI的组成RMI实现Server0x01 编写一个远程接口0x02 实现该远程接口0x03 Registry注册远程对象 Client 小疑问RMI攻击 【java安全】RMI 前言 RMI全称为&#xff1a;Remote Method Invocation 远程方法调用&#xff0c;是java独立的一种机制。 RM…

Mnist分类与气温预测任务

目录 传统机器学习与深度学习的特征工程特征向量pytorch实现minist代码解析归一化损失函数计算图Mnist分类获取Mnist数据集&#xff0c;预处理&#xff0c;输出一张图像面向工具包编程使用TensorDataset和DataLoader来简化数据预处理计算验证集准确率 气温预测回归构建神经网络…

ChatGPT统计“一到点就下班”的人数

ChatGPT统计“一到点就下班”的人数 1、到点下班 Chatgpt统计各部门F-D级员工到点下班人数占比&#xff0c;是在批评公司内部存在到点下班现象。 根据图片&#xff0c;该占比的计算方法是&#xff1a;最后一次下班卡在17:30-17:40之间&#xff0c;且1-5月合计有40天以上的人…

无人机影像配准并发布(共线方程)

无人机影像 DEM 计算四个角点坐标&#xff08;刚性变换&#xff09; 像空间坐标&#xff08;x,y,-f&#xff09; 像空间坐标畸变纠正 deltax,deltay 已知(x,y)&#xff0c;求解(X,Y, Z)或者(Lat,Lon) 这里的Z是DEM上获取的坐标和Zs为相机坐标的高程&#xff0c;如果均为已…

Django on_delete参数在sql级别操作中不生效问题

class AA(models.Model):name models.CharField(max_length128)class Meta:db_table aaclass BB(models.Model):name models.CharField(max_length128)aa models.ForeignKey(AA, nullTrue, on_deletemodels.CASCADE)class Meta:db_table bb 如上当使用ORM删除aa表中的数据…

12-1_Qt 5.9 C++开发指南_自定义插件和库-自定义Widget组件(提升法(promotion)创建自定义定制化组件)

当UI设计器提供的界面组件不满足实际设计需求时&#xff0c;可以从 QWidget 继承自定义界面组件。 有两种方法使用自定义界面组件&#xff1a; 一种是提升法(promotion)&#xff0c;例如在8.3 节将一个QGraphicsView组件提升为自定义的 QWGraphicsView 类&#xff0c;提升法用…

html实现蜂窝菜单

效果图 CSS样式 keyframes _fade-in_mkmxd_1 {0% {filter: blur(20px);opacity: 0}to {filter: none;opacity: 1} } keyframes _drop-in_mkmxd_1 {0% {transform: var(--transform) translateY(-100px) translateZ(400px)}to {transform: var(--transform)} } ._examples_mkmx…

MHA高可用配置及故障切换

文章目录 MHA高可用配置及故障切换一. MySQL MHA1.什么是MHA&#xff12;.&#xff2d;&#xff28;&#xff21;的组成&#xff12;.&#xff11;MHA Node (数据节点)&#xff12;.&#xff12;MHA Manager (管理节点) &#xff13;.&#xff2d;&#xff28;&#xff21;的特…

使用python库uvicorn替代Nginx发布Vue3项目

目录 一、Vue3项目打包 二、将打包文件放到python项目 三、配置uvicorn服务 四、启动服务 【SpringBoot版传送门&#xff1a;使用SpringBoot替代Nginx发布Vue3项目_苍穹之跃的博客-CSDN博客】 一、Vue3项目打包 &#xff08;博主vue版本&#xff1a;3.2.44&#xff09; 由…

POI 导出 树形结构

参考文章&#xff1a;(327条消息) Excel树状数据绘制导出_excel导出树形结构_Deja-vu xxl的博客-CSDN博客https://blog.csdn.net/weixin_45873182/article/details/120132409?spm1001.2014.3001.5502 Overridepublic void exportPlus(String yearMonth, HttpServletRequest re…

spring5源码篇(12)——spring-mvc请求流程

spring-framework 版本&#xff1a;v5.3.19 文章目录 一、请求流程1、处理器映射器1.1、 RequestMappingHandlerMapping1.2、获取对应的映射方法1.3、添加拦截器 2、获取合适的处理器适配器3、通过处理器适配器执行处理器方法3.1、拦截器的前置后置3.2、处理器的执行3.2.1 参数…