TransUNet论文笔记

论文:TransUNet:Transformers Make Strong Encoders for Medical Image Segmentation

目录

Abstract

Introduction

Related Works 

各种研究试图将自注意机制集成到CNN中。

Transformer

Method

Transformer as Encoder

图像序列化

Patch Embedding

TransUNet

CNN-Transformer Hybrid as Encoder

级联上采样

Experiments and Discussion

数据集和评估

消融实验 

skip-connection的消融实验

输入分辨率的消融实验

序列长度和补丁大小的消融实验

模型缩放的消融实验

可视化

Conclusion 


 

Abstract

在深度学习医学图像分割领域,UNet结构一直以来都牢牢占据着主导地位,并取得了巨大的成功。然而,由于卷积操作的固有局部性,U-Net通常在远程依赖方面表现出局限性。Transformer是为序列到序列的预测而设计的,已经成为具有固有全局自注意力机制的替代架构,但由于缺乏低级细节,可能导致定位能力有限。

在本文中,作者提出了TransUNet,它兼有transformer和U-Net的优点,作为医学图像分割的强大替代方案。一方面,Transformer对来自卷积神经网络(CNN)特征映射的标记化图像patches进行编码,作为提取全局上下文的输入序列。另一方面,解码器对编码特征进行采样,然后将其与高分辨率CNN特征图相结合,以实现精确的定位。

Introduction

卷积网络的兴起,促进了图像领域的进步。并且广泛应用于图像分类任务,但是在一些特定场景,如生物医学图像处理领域,通常是需要像素级的分类任务,也就是图像分割任务。

生物医学图像的特点:

1、图像语义较为简单,结构较为固定;

2、数据量少;

3、可解释性重要。

Unet是一个包含4层下采样、4层上采样以及一个类似跳跃连接结构的全卷积网络。数据先经过传统的特征提取路径来获取语义信息,将图像压缩为由特征组成的特征图,然后再经过特征复原路径来精准定位,将提取的特征解码为与原始图像尺寸一样的分割后的预测图像。

6721bdddac6a429c9670e820c2285254.png

Encoder左半部分,由两个3x3的卷积层(RELU)再加上一个2x2的max pooling层组成一个下采样的模块;

Decoder右半部分,由一个上采样的卷积层(去卷积层)+特征拼接concat+两个3x3的卷积层(ReLU)反复构成;这种通过通道数的拼接,可以得到更多的特征。

Related Works 

各种研究试图将自注意机制集成到CNN中。

卡内基梅隆大学的王小龙等人设计了一个非局部算子,可插入多个中间卷积层。 

Schlemper等人在编码器-解码器u型架构的基础上,提出了集成到跳过连接中的附加注意门模块。

与这些方法不同的是,作者使用了transformer来嵌入全局自注意力机制。

Transformer

Transformer被提出用于机器翻译,并在许多NLP任务中建立了最先进的状态。为了使Transformer也适用于计算机视觉任务,进行了一些修改。

Parmar等对每个查询像素仅在局部邻域应用自注意,而不是全局应用。

Child等人提出了稀疏transformer,它采用可扩展的近似全局自注意力。

最近,Vision Transformer (ViT)通过直接将具有全局自注意力的Transformer应用于全尺寸图像,实现了最先进的ImageNet分类。据我们所知,TransUNet是第一个基于transform的医学图像分割框架,它建立在非常成功的ViT之上。

Method

Transformer as Encoder

图像序列化

首先通过将输入eq?X属于eq?R%5E%7BH*W*C%7D,给定图像其空间分辨率为H*W,通道数为C。用eq?P%5Ctimes%20P大小的切片去分割图片可以得到N个切片(N=eq?%5Cfrac%7BH%5Ccdot%20W%7D%7BP%5E%7B2%7D%7D是图像切片的数量,即输入序列长度),那么每个切片的尺寸就是P∗P∗C,形成二维的序列,转化为向量,将N个切片重组后向量连接就可以得到𝑁𝑃𝑃𝐶(总的输入变换)的二维矩阵。

1ebab9731a1b4dd0a5240b3f0588e504.png

 

Patch Embedding

需要注意,作者最后进行Patch Embeding的输入并不是图像序列化,而是CNN提取到的特征;

切片𝑥𝑝x_p通过线性投影( linear projection)映射到D维的嵌入空间,为了对patch空间信息进行编码,我们学习特定的位置嵌入,并将其添加到patch嵌入中以保留位置信息,方法如下:

eq?z_%7B0%7D%3D%5Bx_%7Bp%7D%5E%7B1%7D%3Bx_%7Bp%7D%5E%7B2%7D%3B...%3Bx_%7Bp%7D%5E%7BN%7DE%5D+E_%7Bpos%7D

其中eq?E为嵌入投影, eq?E_%7Bpos%7D为位置投影

0fc24c7afba7463ca6209135e197df61.png

 

Tranformer编码器由L层多头自注意(MSA)和多层感知器(MLP)块(等式)组成

51b2f1946dc94d1082cb0f512ad2f6ad.png

eq?z_%7Bl%7D%5E%7B%7B%7D%27%7D%3DMSA%28LN%28z_%7Bl-1%7D%29%29+z_%7Bl-1%7D

eq?z_%7Bl%7D%3DMLP%28LN%28z_%7Bl%7D%5E%7B%7B%7D%27%7D%29%29+z_%7Bl%7D%5E%7B%7B%7D%27%7D%2C

式中LN(·)为层归一化算子,eq?z_%7Bl%7D为编码后的图像表示。

TransUNet

transformer作为encoder部分,对transformer后的编码特征是eq?%5Cfrac%7BH%5Ccdot%20W%7D%7BP%5E%7B2%7D%7D*D,为了恢复空间信息,将eq?%5Cfrac%7BH%5Ccdot%20W%7D%7BP%5E%7B2%7D%7D*D恢复至eq?%5Cfrac%7BH%7D%7BP%7D*%5Cfrac%7BW%7D%7BP%7D*D,然后使用U-Net的decoder部分,上采样恢复分辨率至eq?H*W。虽然也能产生合理的结果,但结果比较粗糙,缺少高分辨率的细节信息。也就是说此时的结构不是transformer的最佳应用,因为通常eq?%5Cfrac%7BH%7D%7BP%7D*%5Cfrac%7BW%7D%7BP%7Deq?H*W小很多,分辨率在恢复至eq?H*W过程中,不可避免导致定位信息的损失。为了弥补这种定位细节信息的损失,作者继续提出了CNN-Transformer的混合结构。

CNN-Transformer Hybrid as Encoder

TransUNet不是使用纯Transformer作为编码器,而是使用CNN-Transformer混合模型,其中CNN首先用作特征提取器,为输入生成特征映射。Patch embedding是对CNN feature map中提取的1 × 1的Patch进行嵌入,而不是对原始图像进行嵌入。

0634afa313bc4007b883a92e548cd42e.png

我们选择这种设计是因为:

1)它允许我们在解码路径中利用中间高分辨率CNN特征图;

2)我们发现混合CNN-Transformer编码器比简单地使用纯Transformer作为编码器性能更好。

级联上采样

作者引入了一个级联上采样器(CUP),它由多个上采样步骤组成,用于解码隐藏特征以输出最终的分割掩码。在将隐藏特征eq?z_%7BL%7D%5Cmathbb%7BC%7DR%5E%7B%5Cfrac%7BHW%7D%7BP%5E%7B2%7D%7D*D%7D的序列重塑为eq?%5Cfrac%7BH%7D%7BP%7D*%5Cfrac%7BW%7D%7BP%7D*D的形状后,我们通过级联多个上采样块来实例化CUP,以达到从eq?%5Cfrac%7BH%7D%7BP%7D*%5Cfrac%7BW%7D%7BP%7Deq?H*W的全分辨率,其中每个块依次由上采样算子、3×3卷积层和ReLU层组成。

a334689ad71a4486beaa4685db4c75c8.png

整体TransUNet框图如下图所示

58f517ae92174203be9000144120c81a.png

Experiments and Discussion

数据集和评估

Synapse multi-organ segmentation dataset(Synapse多器官分割数据集)腹部CT扫描 (30次腹部CT扫描 总共有3779张轴向增强腹部临床CT图像)报告了8个腹部器官的平均Dice和平均豪斯多夫距离(HD),随机分为18个训练病例(2212个轴向切片)和12个验证病例。

bb889614a50c404a8dcad9666354555d.png Automated cardiac diagnosis challenge心脏CMR(心脏核磁)一系列短轴切片从左心室底部到顶部覆盖心脏,切片厚度为5至8毫米。短轴平面内空间分辨率从0.83到1.75 mm^2/pixel。每个患者扫描都用手工标注了左心室(LV)、右心室(RV)和心肌(MYO)。报告了平均Dice,随机分为70个训练病例(1930个轴向切片),10个用于验证,20个用于测试。 

ee600ae6148d47d6b7683634ad8a8c34.png

消融实验 

为了彻底评估TransUNet框架并验证其在不同设置下的性能,进行了各种消融研究

包括:1)跳过连接数;2)输入分辨率;3)序列长度和补丁大小;4)模型缩放。

skip-connection的消融实验

首先做了skip-connection的消融实验,可以明显看出3层跳跃连接的DSC更高,代表着跳跃连接的增加对模型是有益的。

e74bb99ef13f4b0183c9ef67177ee473.png

输入分辨率的消融实验

作者测试了224×224分辨率和512×512分辨率的DSC,发现512×512分辨率图像作为输入获得了更高的DSC,但是处于性能考虑,还是选择了224×224进行后续测试。

7b60efb86f094504abf9f06e2d4d1cd7.png

序列长度和补丁大小的消融实验

较小的patch尺寸可以获得较高的分割性能。

Transformer的序列长度与补丁大小的平方成反比

b9a17daaa863421db76251a58406c334.png

模型缩放的消融实验

最后,我们对不同模型尺寸的TransUNet进行了消融实验。作者研究了两种不同的TransUNet配置, “Base”和“Large”模型。对于“Base”模型,隐藏大小D、层数、MLP大小和头部数量分别设置为12、768、3072和12;而“Large”模型的这些超参数分别设置为24、1024、4096和16。从表4我们得出结论,更大的模型导致更好的性能。考虑到计算成本,所有实验均采用“Base”模型。 01012daaee874c839fc482bd701c4cc3.png

可视化

作者还进行可视化比较,从图中可以看出TransUnet的分割更为精细,错误率更低。

309ee6f3eaf44bef9e2fb0da5415f357.png

Conclusion 

TransUNet是率先将Transformer结构用于医学图像分割工作的研究。TransUNet将重视全局信息的Transformer结构和底层图像特征的CNN一起进行混合编码,能够更大程度上提升UNet的分割效果。Transformer是一种天生具有强大自注意机制的结构。在这篇论文中,作者研究Transformer在一般医学图像分割中的应用。为了充分利用Transformer的力量,提出了TransUNet,它不仅将图像特征作为序列来编码强全局上下文,还通过Unet混合网络设计来很好地利用低层CNN特征。TransUNet可作为一种替代框架用于医学图像分割,其性能优于各种竞争方法,包括基于cnn的自注意力方法。本文为了完整的应用transformer,提出了TransUNet, 不仅通过将图像以序列处理编码全局上下文信息,也通过使用U型结构将低层次CNN特征利用上,作为基于FCN的主流医学图像分割方法的替代框架,在医学图像分割上(包括多器官分割和心脏分割)上均比各种竞争方法(像基于CNN的自注意方法)具有更优的表现。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/489356.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

windows下的vscode + opencv4.8.0(C++) 配置

1.添加环境变量 D:\mingw64\bin 2.安装vscode 3.下载opencv 4.8.0 4.程序引用第三方库(opencv为例) 打开CMakeLists.txt,引入头文件,使用include_directories 加入头文件所在目录。静态链接库link_directories # 头文件 include_directories(D:/ope…

Java中 List 集合,通过 Stream 流进行排序总结

一、数据准备 public class OrderTest {private String channelCode;private BigDecimal rate;// 省略 getter、setter、toString()、constructor }List<OrderTest> orderTestList new ArrayList<>();OrderTest z09 new OrderTest("Z09", new BigDeci…

[Qt学习笔记]Qt实现自定义控件SwitchButton开关按钮

1、功能介绍 在项目UI中使用较多的打开/关闭的开关按钮&#xff0c;一般都是找图片去做效果&#xff0c;比如说如下的图像来表征打开或关闭。 如果想要控件有打开/关闭的动画效果或比较好的视觉效果&#xff0c;这里就可以使用自定义控件&#xff0c;使用Painter来绘制控件。软…

C++ primer 第十五章

1.OPP:概述 面向对象程序设计的核心思想是数据抽象、继承和动态绑定。 通过继承联系在一起的类构成一种层次关系&#xff0c;在层次关系的根部的是基类&#xff0c;基类下面的类是派生类 基类负责定义在层次关系中所有类共同拥有的成员&#xff0c;而每个派生类定义各自特有…

FFmpeg+mediamtx 实现将本地摄像头推送成RTSP流

文章目录 概要推流过程实现过程安装FFmpeg安装Mediamtx 启动推流 概要 FFmpegmediamtx实现将本地摄像头推送成RTSP流 FFmpeg 版本号为&#xff1a;N-114298-g97d2990ea6-20240321 mediamtx 版本号为&#xff1a;v1.6.0 推流过程 摄像头数据&#xff0c;经过ffmpeg的推流代码…

带手柄聚四氟乙烯烧杯方便省力好用

可定制各种规格形状四氟烧杯&#xff0c;也可以单独配盖子。 注&#xff1a;可配套我公司生产的防腐电热板、赶酸电热板后期赶酸使用。 产品特性 1.外观纯白色&#xff1b; 2.耐高低温&#xff1a;可使用温度-200℃&#xff5e;&#xff0b;250℃&#xff1b; 3.耐腐蚀&am…

基于SpringBoot+MyBatis+Vue的电商智慧仓储管理系统的设计与实现(源码+LW+部署+讲解)

前言 博主简介&#x1f468;&#x1f3fc;‍⚕️&#xff1a;国内某一线互联网公司全栈工程师&#x1f468;&#x1f3fc;‍&#x1f4bb;&#xff0c;业余自媒体创作者&#x1f4bb;&#xff0c;CSDN博客专家&#x1f3c6;&#xff0c;Java领域优质创作者&#x1f4d5;&#x…

【直播预约】镭速邀您共赴2024年首场线上直播沙龙!

为了深入探讨智能制造数据安全交互的前沿趋势&#xff0c; 解锁数据安全在智能制造业的无限潜能&#xff0c; 镭速传输即将举办一场&#xff0c; 不容错过的2024首场线上直播沙龙&#xff01; 镭速传输&#xff0c;将在03月27日 14:30 在视频号进行直播 镭速助力行业数字化…

Jmeter使用教程,从安装到HTTP的压测全部实战教程解析,不学后悔系列

作为一名开发工程师&#xff0c;当我们接到需求的时候&#xff0c;一般就是分析需要&#xff0c;确定思路&#xff0c;编码&#xff0c;自测&#xff0c;然后就可以让测试人员去测试了。在自测这一步&#xff0c;作为开发人员&#xff0c;很多时候就是测一下业务流程是否正确&a…

IBM:《2023IBM年报》

2024年3月12日&#xff0c;IBM分享了《2023IBM年报》。 报告节选&#xff1a; 在本财年&#xff0c;IBM 的收入为 619 亿美元&#xff0c;按固定汇率计算增长 3%&#xff0c;自由现金流为 112 亿美元&#xff0c;同比增长 19 亿美元。我们经历了对新 watsonx 平台日益增长的需…

Python:基础语法

一、import与from.....import 有时候我们需要使用一些第三方库或包时&#xff0c;我们就需要通过import或from.....import导入模块。 # 导入库 import sys print("hello,world") 当我们自己写了些函数&#xff0c;在其他py文件&#xff0c;我们也可以通过from.....im…

Selenium 自动化 —— 浏览器窗口操作

更多内容请关注我的专栏&#xff1a; 入门和 Hello World 实例使用WebDriverManager自动下载驱动Selenium IDE录制、回放、导出Java源码 当用 Selenium 打开浏览器后&#xff0c;我们就可以通过 Selenium 对浏览器做各种操作&#xff0c;就像我们日常用鼠标和键盘操作浏览器一…

初学php反序列化

php中&#xff0c;序列化和反序列化是相对的两个过程&#xff0c;序列化是把变量或对象转化成字符串的过程 反序列化是把字符串转换为变量过着对象的过程 在php的反序列化中&#xff0c;存在类&#xff0c;当类被以特定的方式就会触发魔术方法&#xff0c;在实行序列化的过程…

element ui的下拉选择单选和多选

单选&#xff1a; html代码&#xff1a; <el-form-item label"指令分类: "><el-select v-model"cid" style"width:100%;" placeholder"请选择指令分类" clearable><el-option v-for"item in orderCidList"…

服务器中有g++,但是查询不到,Command ‘g++‘ not found

有gcc但是查询不到g&#xff0c;gcc版本为9.5.0 (base) zyICML:~$ g -V Command g not found, but can be installed with: apt install g Please ask your administrator. 突然就出现这个问题&#xff0c;导致detectron装不上&#xff0c;现在有时间了专门研究下怎么解决 这…

React Native 应用打包

引言 在将React Native应用上架至App Store时&#xff0c;除了通常的上架流程外&#xff0c;还需考虑一些额外的优化策略。本文将介绍如何通过配置App Transport Security、Release Scheme和启动屏优化技巧来提升React Native应用的上架质量和用户体验。 配置 App Transport…

❤ leetCode简易题1-两数之和、简易2--回文数判断、简易14-最长公共前缀

❤ leetCode简易题1-两数之和、简易题14- 最长公共前缀 1、简易1-两数之和 ① 题目要求 数字A B target&#xff0c;以target为求和结果&#xff0c;找出数组中符合的A、B数字下标。 第一次做的时候完全脑子一片蒙&#xff0c;随后认真看了看题目发现是发现找符合target和…

基于springboot+vue+Mysql的超市进销存系统

开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;…

3.25C++

定义自己的命名空间&#xff0c;其中有string类型的变量&#xff0c;再定义两个函数&#xff0c;一个函数完成字符串的输入&#xff0c;一个函数完成求字符串长度&#xff0c;再定义一个全局函数完成对该字符串的反转 #include <iostream> #include <cstring> usi…

数据在内存的存储(2)【浮点数在内存的存储】

一.浮点数以什么形式存储在内存中 根据根据国际标准IEEE&#xff08;电气和电子工程协会&#xff09;754&#xff0c;任意一个二进制浮点数V都可以存储为这样的形式&#xff1a; V&#xff08;-1&#xff09;^S*M*2^E。 &#xff08;1&#xff09;&#xff08;-1&#xff09;^…