DMA控制器

前言

大家好,我是jiantaoyab,这是我作为学习笔记的25篇,本篇文章给大家介绍DMA。

无论 I/O 速度如何提升,比起 CPU,总还是太慢。如果我们对于 I/O 的操作,都是由 CPU 发出对应的指令,然后等待 I/O 设备完成操作之后返回,那 CPU 有大量的时间其实都是在等待 I/O 设备完成操作。

但是,这个 CPU 的等待,在很多时候,其实并没有太多的实际意义。我们对于 I/O 设备的大量操作,其实都只是把内存里面的数据,传输到 I/O 设备而已,特别是当传输的数据量比较大的时候,比如进行大文件复制,如果所有数据都要经过 CPU,实在是有点儿太浪费时间了。

因此,计算机工程师们,就发明了 DMA 技术,也就是直接内存访问(Direct Memory Access)技术,来减少 CPU 等待的时间。

理解 DMA,一个协处理器

DMA 技术就是在主板上放一块独立的芯片。在进行内存和 I/O 设备的数据传输的时候,不再通过 CPU 来控制数据传输,而直接通过DMA 控制器(DMA Controller,简称 DMAC)。这块芯片,我们可以认为它其实就是一个协处理器(Co-Processor)。

DMAC 最有价值的地方体现在,当我们要传输的数据特别大、速度特别快,或者传输的数据特别小、速度特别慢的时候。

比如说,我们用千兆网卡或者硬盘传输大量数据的时候,如果都用 CPU 来搬运的话,肯定忙不过来,所以可以选择 DMAC。而当数据传输很慢的时候,DMAC 可以等数据到齐了,再发送信号,给到 CPU 去处理,而不是让 CPU 在那里等待。

DMAC 是在“协助”CPU,完成对应的数据传输工作。在 DMAC 控制数据传输的过程中,我们还是需要 CPU 的。

除此之外,DMAC 其实也是一个特殊的 I/O 设备,它和 CPU 以及其他 I/O 设备一样,通过连接到总线来进行实际的数据传输。

总线上的设备,其实有两种类型。一种我们称之为主设备(Master),另外一种,我们称之为从设备(Slave)。

想要主动发起数据传输,必须要是一个主设备才可以,CPU 就是主设备。而从设备(比如硬盘)只能接受数据传输。

所以,如果通过 CPU 来传输数据,要么是 CPU 从 I/O 设备读数据,要么是 CPU 向 I/O 设备写数据。

那 I/O 设备不能向主设备发起请求么?可以是可以,不过这个发送的不是数据内容,而是控制信号。I/O 设备可以告诉 CPU,我这里有数据要传输给你,但是实际数据是 CPU 从拉走的,而不是 I/O 设备推给 CPU 的。

image-20240325220400315

不过DMAC 它既是一个主设备,又是一个从设备。对于 CPU 来说,它是一个从设备;对于硬盘这样的 IO 设备来说呢,它又变成了一个主设备。

那使用 DMAC 进行数据传输的过程究竟是什么样的呢?下面我们来具体看看。

  1. 首先,CPU 还是作为一个主设备,向 DMAC 设备发起请求。这个请求,其实就是在 DMAC 里面修改配置寄存器。
  2. CPU 修改 DMAC 的配置的时候,会告诉 DMAC 这样几个信息:
  • 首先是源地址的初始值以及传输时候的地址增减方式
    所谓源地址,就是数据要从哪里传输过来。如果我们要从内存里面写入数据到硬盘上,那么就是要读取的数据在内存里面的地址。如果是从硬盘读取数据到内存里,那就是硬盘的 I/O 接口的地址。I/O 的地址可以是一个内存地址,也可以是一个端口地址。而地址的增减方式就是说,数据是从大的地址向小的地址传输,还是从小的地址往大的地址传输。
  • 其次是目标地址初始值和传输时候的地址增减方式。目标地址自然就是和源地址对应的设备,也就是我们数据传输的目的地。
  • 第三个自然是要传输的数据长度,也就是我们一共要传输多少数据。
  1. 设置完这些信息之后,DMAC 就会变成一个空闲的状态(Idle)。

  2. 如果我们要从硬盘上往内存里面加载数据,这个时候,硬盘就会向 DMAC 发起一个数据传输请求。这个请求并不是通过总线,而是通过一个额外的连线。

  3. 然后,我们的 DMAC 需要再通过一个额外的连线响应这个申请。

  4. 于是,DMAC 这个芯片,就向硬盘的接口发起要总线读的传输请求。数据就从硬盘里面,读到了 DMAC 的控制器里面。

  5. 然后,DMAC 再向我们的内存发起总线写的数据传输请求,把数据写入到内存里面。

  6. DMAC 会反复进行上面第 6、7 步的操作,直到 DMAC 的寄存器里面设置的数据长度传输完成。

  7. 数据传输完成之后,DMAC 重新回到第 3 步的空闲状态。

所以,整个数据传输的过程中,不是通过 CPU 来搬运数据,而是由 DMAC 这个芯片来搬运数据。但是 CPU 在这个过程中也是必不可少的。因为传输什么数据,从哪里传输到哪里,其实还是由 CPU 来设置的。这也是为什么,DMAC 被叫作“协处理器”。

image-20240325220704317

最早,计算机里是没有 DMAC 的,所有数据都是由 CPU 来搬运的。

随着对于数据传输的需求越来越多,先是出现了主板上独立的 DMAC 控制器。到了今天,各种 I/O 设备越来越多,数据传输的需求越来越复杂,使用的场景各不相同。加之显示器、网卡、硬盘对于数据传输的需求都不一样,所以各个设备里面都有自己的 DMAC 芯片了。

Kafka 的实现原理

过去几年的大数据浪潮里面有一个开源项目很好地利用了 DMA 的数据传输方式,通过 DMA 的方式实现了非常大的性能提升。这个项目就是Kafka

Kafka 是一个用来处理实时数据的管道,我们常常用它来做一个消息队列,或者用来收集和落地海量的日志。作为一个处理实时数据和日志的管道,瓶颈自然也在 I/O 层面。

Kafka 里面会有两种常见的海量数据传输的情况。一种是从网络中接收上游的数据,然后需要落地到本地的磁盘上,确保数据不丢失。另一种情况则是从本地磁盘上读取出来,通过网络发送出去。

我们来看一看后一种情况,从磁盘读数据发送到网络上去。如果我们自己写一个简单的程序,最直观的办法,自然是用一个文件读操作,从磁盘上把数据读到内存里面来,然后再用一个 Socket,把这些数据发送到网络上去。

在这个过程中,数据一共发生了四次传输的过程。其中两次是 DMA 的传输,另外两次,则是通过 CPU 控制的传输。下面我们来具体看看这个过程。

第一次传输,是从硬盘上,读到操作系统内核的缓冲区里。这个传输是通过 DMA 搬运的。

第二次传输,需要从内核缓冲区里面的数据,复制到我们应用分配的内存里面。这个传输是通过 CPU 搬运的。

第三次传输,要从我们应用的内存里面,再写到操作系统的 Socket 的缓冲区里面去。这个传输,还是由 CPU 搬运的。

最后一次传输,需要再从 Socket 的缓冲区里面,写到网卡的缓冲区里面去。这个传输又是通过 DMA 搬运的。

image-20240325220928619

我们只是要“搬运”一份数据,结果却整整搬运了四次。而且这里面,从内核的读缓冲区传输到应用的内存里,再从应用的内存里传输到 Socket 的缓冲区里,其实都是把同一份数据在内存里面搬运来搬运去,特别没有效率。

像 Kafka 这样的应用场景,其实大部分最终利用到的硬件资源,其实又都是在干这个搬运数据的事儿。所以,我们就需要尽可能地减少数据搬运的需求。

Kafka 做的事情就是,把这个数据搬运的次数,从上面的四次,变成了两次,并且只有 DMA 来进行数据搬运,而不需要 CPU。

Kafka 的代码调用了 Java NIO 库,具体是 FileChannel 里面的 transferTo 方法。数据并没有读到中间的应用内存里面,而是直接通过 Channel,写入到对应的网络设备里。并且,对于 Socket 的操作,也不是写入到 Socket 的 Buffer 里面,而是直接根据描述符(Descriptor)写入到网卡的缓冲区里面。于是,在这个过程之中,我们只进行了两次数据传输。

image-20240325221044727

第一次,是通过 DMA,从硬盘直接读到操作系统内核的读缓冲区里面。

第二次,则是根据 Socket 的描述符信息,直接从读缓冲区里面,写入到网卡的缓冲区里面,同一份数据传输的次数从四次变成了两次,并且没有通过 CPU 来进行数据搬运,所有的数据都是通过 DMA 来进行传输的。

在这个方法里面,我们没有在内存层面去“复制(Copy)”数据,所以这个方法,也被称之为零拷贝(Zero-Copy)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/488334.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

conda 查看激活自己的新环境,labelImg的使用

查看环境目录 我们可以在基础环境中查看我们有几个环境 conda env list 激活新环境 我们激活pytorch环境pytorch conda activate pytorch 在新环境下安装 然后我们安装labelImg(Python3.10以上会报错) pip install labelImg 新环境下打开 labelImg …

4.3 函数call,ret指令

汇编语言 1. 把循环执行ax的值右移一位的方法用函数封装起来 用汇编语言函数封装的方法实现计算2^12 assume cs:codesg codesg segmentmov ax,2mov cx,11call s //调用函数sint 21hs:add ax,axloop s //循环sret //返回值codesg ends end2. call,ret…

开源 OLAP 及其在不同场景下的需求

目录 一、开源 OLAP 综述 二、OLAP场景思考 2.1 面向客户的报表 2.2 面向经营的报表 2.3 末端运营分析 2.4 用户画像 2.5 订单分析 2.6 OLAP技术需求思考 三、开源数据湖/流式数仓解决方案 3.1 离线数仓体系——Lambda架构 3.2 实时数据湖解决方案 3.3 实时分析解决…

Linux文件IO(2):使用标准IO进行文件的打开、关闭、读写、流定位等相关操作

目录 前言 文件的打开和关闭的概念 文件的打开 文件的打开函数 文件打开的模式 文件的关闭 文件的关闭函数 注意事项 字符的输入(读单个字符) 字符输入的函数 注意事项 字符的输出(写单个字符) 字符输出的函数 注意…

iMazing2024功能强大的iPhone和iPad管理工具

iMazing是一款功能强大的iPhone和iPad管理工具,确实可以作为iTunes的替代品进行数据备份。以下是一些关于iMazing的主要特点和功能: 设备备份:iMazing可以备份iOS设备上的所有数据,包括照片、视频、音乐、应用程序等。与iTunes相比…

STM32存储左右互搏 SPI总线FATS文件读写SD/MicroSD/TF卡

STM32存储左右互搏 SPI总线FATS文件读写SD/MicroSD/TF卡 SD/MicroSD/TF卡是基于FLASH的一种常见非易失存储单元,由接口协议电路和FLASH构成。市面上由不同尺寸和不同容量的卡,手机领域用的TF卡实际就是MicroSD卡,尺寸比SD卡小,而…

SQLite数据库文件损坏的可能几种情况(一)

返回:SQLite—系列文章目录 上一篇:SQLiteC/C接口详细介绍sqlite3_stmt类(十三) 下一篇:SQLite使用的临时文件(二) 概述 SQLite数据库具有很强的抗损坏能力。如果应用程序崩溃&#xff0c…

Excel·VBA数组平均分组问题

看到一个帖子《excel吧-数据分组问题》,对一组数据分成4组,使每组的和值相近 上一篇文章《ExcelVBA数组分组问题》,解决了这个帖子问题的第1步,即获取所有数组分组形式的问题 接下来要获取分组和值最相近的一组,只需计…

Docker 搭建Redis集群

目录 1. 3主3从架构说明 2. 3主3从Redis集群配置 2.1关闭防火墙启动docker后台服务 2.2 新建6个docker容器实例 2.3 进去任意一台redis容器,为6台机器构建集群关系 2.4 进去6381,查看集群状态 3. 主从容错切换迁移 3.1 数据读写存储 3.1.1 查看…

【代驾+顺风车+货运】全开源双端APP代驾+顺风车+货运代驾小程序源码

内容目录 一、详细介绍二、效果展示1.部分代码2.效果图展示 一、详细介绍 系统是基于Thinkphpuniapp开发的,全开源未加密,这套源码可以拿回去自己做二开 后台用户端司机端 功能详情介绍: 车主实名认证,驾驶证认证,车…

【Spring】IoCDI详解

1. IoC详解 前面提到过IoC就是将对象的控制权交由Spring的IoC容器进行管理,由Spring的IoC容器创建和销毁bean,那么既然涉及到容器,就一定包含以下两方面功能: bean的存储bean的获取 1.1 类注解 Spring框架为了更好地服务应用程…

GIT开发中的使用

GIT 什么是Git? Git是一个版本控制器:可以记录工程的每一次改动和版本迭代的一个管理系统 注意事项: 所有的版本控制系统,其实只能跟踪文本文件的改动(如TXT文件、网页、所有的程序代码等),…

数据库系统概论(超详解!!!) 第四节 关系数据库标准语言SQL(Ⅱ)

1.数据查询 SELECT [ ALL | DISTINCT] <目标列表达式>[&#xff0c;<目标列表达式>] … FROM <表名或视图名>[&#xff0c; <表名或视图名> ] … [ WHERE <条件表达式> ] [ GROUP BY <列名1> [ HAVING <条件表达式> ] ] [ ORDER BY…

Mac 装 虚拟机 vmware、centos7等

vmware&#xff1a; https://www.vmware.com/products/fusion.html centos7 清华镜像&#xff1a; 暂时没有官方的 m1 arm架构镜像 centos7 链接: https://pan.baidu.com/s/1oZw1cLyl6Uo3lAD2_FqfEw?pwdzjt4 提取码: zjt4 复制这段内容后打开百度网盘手机App&#xff0c;操…

2015年认证杯SPSSPRO杯数学建模C题(第二阶段)荒漠区动植物关系的研究全过程文档及程序

2015年认证杯SPSSPRO杯数学建模 C题 荒漠区动植物关系的研究 原题再现&#xff1a; 环境与发展是当今世界所普遍关注的重大问题, 随着全球与区域经济的迅猛发展, 人类也正以前所未有的规模和强度影响着环境、改变着环境, 使全球的生命支持系统受到了严重创伤, 出现了全球变暖…

生物信息学 GO、KEGG

文章目录 北大基因本体论分子通路KEGGGO注释分子通路鉴定 关于同源 相似性 b站链接&#xff1a;北大课程 概述了当前生物信息学领域中几个重要的概念和工具&#xff0c;介绍基因本体论&#xff08;Gene Ontology, GO&#xff09;、分子通路知识库KEGG&#xff08;Kyoto Encyclo…

Redis进阶

缓存雪崩 缓存穿透 缓存击穿 Redis在项目中常用作缓存来使用&#xff0c;主要用两大作用&#xff1a; 1.提升系统的性能 Redis基于内存&#xff0c;IO效率远高于MySql数据库 2.减少数据库压力 Redis处理很多请求&#xff0c;使用Redis作为缓存可以减少数据库的请求量&…

9.2024

使用冒泡排序给{10 ,1,35,61,89,36,55}排序 代码&#xff1a; public class 第九题 {public static void main(String[] args) {int a[]{10,1,35,61,89,36,55};for (int i0;i<a.length-1;i){for (int j0;j<a.length-1;j){if (a[j]>a[j1]){int temp0;tempa[j];a[j]a[…

数字量化值Digital Number, 辐射亮度Radiance, 反射率Reflectance,发射率Emissive

我们经常听到有人困惑于图像的像素值储存的是什么信息&#xff0c;以及如何获取所需的值。这里我们总结以下几个概念。 数字量化值&#xff08;Digital Number &#xff1a;DN&#xff09; 像素值的通用术语是数字量化值或DN值&#xff0c;它通常被用来描述还没有校准到具有意…

hbase启动错误-local host is“master:XXXX“ destination is:master

博主的安装前提&#xff1a; zookeeper安装完成&#xff0c;且启动成功 hdfs高可用安装&#xff0c;yarn高可用安装&#xff0c;且启动成功 报错原因&#xff1a;端口配置不对 解决方案&#xff1a; 输入&#xff1a;hdfs getconf -confKey fs.default.name 然后把相应的…