【论文阅读】通过解缠绕表示学习提升领域泛化能力用于主题感知的作文评分

摘要

  • 本文工作聚焦于从领域泛化的视角提升AES模型的泛化能力,在该情况下,目标主题的数据在训练时不能被获得。
  • 本文提出了一个主题感知的神经AES模型(PANN)来抽取用于作文评分的综合的表示,包括主题无关(prompt-invariant)和主题相关(prompt-specific)的特征。
  • 为了提升表示的泛化能力,我们进一步提出了一个新的解缠绕表示学习框架(disentangled representation learning)。在这个框架中,设计了一个对比的模长-角度对齐策略(norm-angular alignment)和一个反事实自训练策略(counterfactual self-training)用于解开表示中主题无关和主题相关的特征信息。

引言

  • 本文提出一个主题感知的神经AES模型,它能够基于一篇作文的编码器(比如说预训练的BERT)来抽取作文的质量特征,并且基于一个文本匹配模块来抽取主题遵循度特征。
  • 存在两个问题:
    • 从编码器中抽取到的作文质量特征,比如BERT,可能编码了质量和内容信息,并且它们在特征中是相互缠绕的。怎样从特征中解开独立的质量信息是第一个问题;
    • 主题关联特征和作文质量特征都是基于作文抽取得到的。因此,从因果的角度看,作文是两种特征的混淆因素,导致主题关联度和作文质量间的有误导性的关联。比如,一篇作文可能有不同的主题关联性但是一样的质量,在不同的主题下。所以,怎样解开这种误导性的关联,使得这两种特征独立得贡献于最终的分数是第二个问题。

方法

  • 解缠绕表示学习框架(DRL)是基于预训练和微调的范式进行设计的。
    • 在预训练阶段,设计了一个对比的norm-angular对齐策略来预训练文章质量特征,目的是解绑特征中的质量和内容信息。
    • 在微调阶段,应用了一个反事实自训练策略来微调整个PANN模型,目的是解绑文章质量特征和主题相关特征之间的误导性的关联。
    • 最后,使用完全训练好的PANN来评分目标主题的作文。

PANN的模型架构

  • 三个主要组成:

    • 作文质量网络(EQ-net):只把作文作为输入,抽取主题无关的作文质量特征。
    • 主题关联网络(PA-net):把作文和主题都作为输入,抽取主题特定的主题遵循度特征。因为这样的基于交互的文本匹配模型能够只关注作文和主题的词级的相似度,它能够避免编码到和作文质量相关的信息,比如句法和内聚力,从而使得特征只特定于主题遵循度。
    • 作文评分预测器(ESP):结合两种特征来预测整体分数。
      在这里插入图片描述

    解缠绕表示学习DRL

    • EQ-net可能会编码主题无关的质量信息和主题相关的内容信息,并且内容信息会在不同主题间切换,它会阻止EQ-net的泛化能力。
    • 并且,PA-net和EQ-net都把作文作为输入,这使得作文变成主题关联度特征和作文质量特征的混淆因素,导致他们之间具有误导性的关联。

质量-内容解缠(Quality-Content Disentanglement)

  • 我们提出了一个对比的模长-角度对齐策略(Contrastive Norm-Angular Alignment,CNAA)来在作文质量特征中的质量和内容信息。
  • 这个策略的设计是基于模长不变性(norm invariant)和角度切换(angular shift)的假设,它假设质量和内容信息能够通过分别对齐就模长和角度而言的特征来被解绑。
  • 对于模长不变性,我们假设相似质量的作文能够本分布具有相似的模长,并且这些模长可能是各个主题都不变的。
  • 对于角度切换,我们假设具有相似内容的作文(i.e.,主题)能够被分布具有相似的角度,但是这些角度应该在不同的主题上切换。

数据增强

在这里插入图片描述

  • 为了准备数据用于对比的模长-角度对齐,我们首先从训练集中抽取所有的高分和低分作文来组成原始数据 D o D_o Do
  • 通过两两拼接这些作文来构建衍生的数据 D d D_d Dd
  • 随机降低分数给拼接后的作文的原因是:
    • 拼接两篇文章可能会降低那篇更高分数的作文的质量(比如,内聚力和组织)。
    • 拼接来自不同主题的两篇文章可能会降低作文的主题遵循度(对两个主题都是)。

模长不变性&角度切换 对齐

  • 基于成对的对比学习,包括模长不变的质量对齐和角度切换的内容对齐。
    在这里插入图片描述

质量-遵循度解缠(Quality-Content Disentanglement)

  • 本文尝试提出和回答以下问题:“如果一篇文章的质量保持不变,但它的题目符合度不同,那么最终得分会是多少?”
    在这里插入图片描述

预评分指导的自训练

  • 本文把每个反事实实例的预打好的预分数和模型预测的伪分数结合作为它的最终分数。以这种方式,在预分数中提供的先验知识和编码在伪分数中的模型知识能够被很好得融合。

实验

  • ASAP数据集和TOEFL11数据集
    在这里插入图片描述

实验结果

  • 我们和主题泛化设置的方法进行比较,包括三类方法:基于手工特征的,基于神经网络的和混合的。
    在这里插入图片描述

  • 可以看到,我们的PANN模型能够超过大多数的基准方法,在两个数据集上都达到最好的整体性能。这表明我们的方法对于主题泛化的作文评分是有用的。

在这里插入图片描述

  • 结合PA-net和EQ-net两个部分比单独的PA-net或者EQ-net的性能好。这表明PA-net和EQ-net都能够为作文评分提供有用的信息。
  • 当EQ-net被用NIA和ASA预训练,EQ-net的性能被提升。但是当EQ-net被只有他们中的一个预训练的时候,在TOEFL11数据集上性能下降了。相似的现象也可以在PA-net+EQ-net上观察到。这可能是由于两个损失需要被同时使用来解开质量和内容信息的缠绕。
  • 并且,CTS也需要和CNAA策略一起使用来获得更好的性能。

进一步分析

在这里插入图片描述

  • 数据增强的影响:可以发现PANN和EQ-net能够从数据增强中受益,特别是在ASAP的P3上,和TOEFL11数据集的P5上。

在这里插入图片描述

  • PA-net的影响:是否PA-net能够独立的影响最终的分数预测。可以看到,PANN为在不匹配的主题下的高分作文预测了平均更低的分数;由于EQ-net在两种设置下输出的特征是不变的,所以PA-net能够感知主题上的变化,能够独立影响分数预测。
  • 数据大小的影响:在数据大小增大时,我们的PANN的预测性能相应提升,但是BERT的性能先上升后下降。这表明我们的表示解缠绕策略能够处理主题个数增长时带来的缠绕的信息的问题,所以模型能够从数据增长中获益。

特征可视化

在这里插入图片描述

  • 展示了EQ-net有和没有CNAA策略时的特征分布。
  • (a)图三个等级的分数相对很好的分开了(left),但是不同主题的作文没有完全分开,特别时低分和中等分数的作文。
  • (b)图中使用了本文的CNAA策略,分数能够很好的分开根据不同的模长,主题能够很好的分开根据不同的角的方向。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/48825.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

实时云渲染技术:VR虚拟现实应用的关键节点

近年来,虚拟现实(Virtual Reality, VR)技术在市场上的应用越来越广泛,虚拟现实已成为一个热门的科技话题。相关数据显示,2019年至2021年,我国虚拟现实市场规模不断扩大,从2019年的282.8亿元增长…

(css)AI智能问答页面布局

(css)AI智能问答页面布局 效果&#xff1a; html <!-- AI框 --><div class"chat-top"><div class"chat-main" ref"chatList"><div v-if"!chatList.length" class"no-message"><span>欢迎使…

特定Adreno GPU的Android设备发生冻屏问题

1&#xff09;特定Adreno GPU的Android设备发生冻屏问题 ​2&#xff09;Unity版本升级后&#xff0c;iOS加载UnityFramework bundle闪退 3&#xff09;关于RectTransfrom.rect在屏幕空间中表示的相关问题 4&#xff09;Unity Mesh泄露问题 这是第345篇UWA技术知识分享的推送&a…

【每日一题】2050. 并行课程 III

【每日一题】2050. 并行课程 III 2050. 并行课程 III题目描述解题思路 2050. 并行课程 III 题目描述 给你一个整数 n &#xff0c;表示有 n 节课&#xff0c;课程编号从 1 到 n 。同时给你一个二维整数数组 relations &#xff0c;其中 relations[j] [prevCoursej, nextCour…

Linux安装部署Nacos和sentinel

1.将nacos安装包下载到本地后上传到linux中 2.进入nacos的/bin目录,输入命令启动nacos [rootlocalhost bin]# sh startup.sh -m standalone注:使用第二种方式启动,同时增加日志记录的功能 2.2 startup.sh文件是不具备足够的权限,否则不能操作 给文件赋予执行权限 [rootlocalh…

yo!这里是STL::string类简单模拟实现

目录 前言 常见接口模拟实现 默认成员函数 1.构造函数 2.析构函数 3.拷贝构造函数 4.赋值运算符重载 迭代器 简单接口 1.size() 2.c_str() 3.clear() 操作符、运算符重载 1.操作符[] 2.运算符 3.运算符> 扩容接口 1.reserve() 2.resize() 增删查改接口 …

【数字IC基础】竞争与冒险

竞争-冒险 1. 基本概念2. 冒险的分类3. 静态冒险产生的判断4. 毛刺的消除使用同步电路使用格雷码增加滤波电容增加冗余项&#xff0c;消除逻辑冒险引入选通脉冲 1. 基本概念 示例一&#xff1a; 如上图所示的这个电路&#xff0c;使用了两个逻辑门&#xff0c;一个非门和一个与…

mybatis-spring

简介 通过简化实现流程&#xff0c;把MyBatis的最核心的内容展示出 mybatis的加载过程 执行流程 类图 核心流程 public class ApiTest {Testpublic void test_queryUserInfoById() {String resource "mybatis-config-datasource.xml";Reader reader;try {reader…

工业平板电脑优化汽车工厂的生产流程

汽车行业一直是自动化机器人系统的早期应用领域之一。通过使用具有高负载能力和远程作用的大型机械臂&#xff0c;汽车装配工厂可以实现点焊、安装挡风玻璃、安装车轮等工作&#xff0c;而较小的机械手则用于焊接和安装子组件。使用机器人系统不仅提高了生产效率&#xff0c;还…

STM32+FPGA的导常振动信号采集存储系统

摘 要 &#xff1a; 针 对 工 厂 重 要 设 备 运 输 途 中 可 能 损 坏 的情 况 &#xff0c; 本 文 设计 了一 套 采 用 &#xff33;&#xff34;&#xff2d;&#xff13;&#xff12;&#xff26;&#xff11;&#xff10;&#xff13;&#xff0b;&#xff26;&#xff3…

nginx mirror代码分析

实现方式 mirror逻辑的工作阶段&#xff1a; ngx在log phase之后&#xff08;在ngx_http_free_request处调用&#xff09;已完成向client端返回response&#xff0c;在log phase之后完成close connection&#xff08;短链接&#xff09;&#xff0c;在该阶段处理mirror逻辑不…

Godot 4 源码分析 - 获取属性信息

在管道通信基础上&#xff0c;可进行宿主程序与Godot的双向通信。 先拿属性信息试试手。 DrGraph端 static UnicodeString command "Book.position"; if (InputQuery("输入窗口", "请输入待获取的属性信息", command)) {TDrStream_Get drGet…

Vue2.x和Vue3.x面试常问知识点-面试题

SPA单页面的理解&#xff0c;它的优缺点分别是什么&#xff1f; 是什么 SPA&#xff08; single page application &#xff09;仅在 Web 页面初始化时加载相应的 HTML、JavaScript 和 CSS。 一旦页面加载完成&#xff0c;SPA 不会因为用户的操作而进行页面的重新加载或跳转 而…

数据结构和算法——表排序(算法概述、物理排序、复杂度分析,包含详细清晰图示过程)

目录 算法概述 物理排序 复杂度分析 算法概述 表排序用于 待排元素都为一个庞大的结构&#xff0c;而不是一个简单的数字&#xff0c;例如&#xff1a;一本书&#xff0c;一部电影等等。 如果这些待排元素都用之前的排序方法&#xff0c;元素需要频繁互换&#xff0c;那么…

内网穿透远程查看内网监控摄像头

内网穿透远程查看内网监控摄像头 在现代社会中&#xff0c;大家总是奔波于家和公司之间。大部分时间用于工作中&#xff0c;也就很难及时知晓家中的动态情况&#xff0c;对于家中有老人、小孩或宠物的&#xff08;甚至对居住环境安全不放心的&#xff09;&#xff0c;这已然是…

01)docker学习 centos7离线安装docker

docker学习 centos7离线安装docker 在实操前可以先看下docker教程,https://www.runoob.com/docker/docker-tutorial.html , 不过教程上都是在线安装方式,很方便,离线安装肯定比如在线麻烦点。 一、什么是Docker 在学习docker时,在网上看到一篇博文讲得很好,自己总结一下…

NAT协议(网络地址转换协议)详解

NAT协议&#xff08;网络地址转换协议&#xff09;详解 为什么需要NATNAT的实现方式静态NAT动态NATNAPT NAT技术的优缺点优点缺点 NAT协议是将IP数据报头中的IP地址转换为另外一个IP地址的过程&#xff0c;主要用于实现私有网络访问公有网络的功能。这种通过使用少量的IP地址代…

一百三十三、Hive——Hive外部表加载含有JSON格式字段的CSV文件数据

一、目标 在Hive的ODS层建外部表&#xff0c;然后加载HDFS中的CSV文件数据 注意&#xff1a;CSV文件中含有未解析的JSON格式的字段数据&#xff0c;并且JSON字段中还有逗号 二、第一次建外部表&#xff0c;直接以&#xff0c;分隔行字段&#xff0c;结果JSON数据只显示一部分…

(树) 剑指 Offer 07. 重建二叉树 ——【Leetcode每日一题】

❓剑指 Offer 07. 重建二叉树 难度&#xff1a;中等 输入某二叉树的 前序遍历 和 中序遍历 的结果&#xff0c;请构建该二叉树并返回其根节点。 假设输入的前序遍历和中序遍历的结果中都不含重复的数字。 示例 1: Input: preorder [3,9,20,15,7], inorder [9,3,15,20,7] …

[NLP]Huggingface模型/数据文件下载方法

问题描述 作为一名自然语言处理算法人员&#xff0c;hugging face开源的transformers包在日常的使用十分频繁。在使用过程中&#xff0c;每次使用新模型的时候都需要进行下载。如果训练用的服务器有网&#xff0c;那么可以通过调用from_pretrained方法直接下载模型。但是就本人…