时序预测 | Matlab实现SSA-BP麻雀算法优化BP神经网络时间序列预测

时序预测 | Matlab实现SSA-BP麻雀算法优化BP神经网络时间序列预测

目录

    • 时序预测 | Matlab实现SSA-BP麻雀算法优化BP神经网络时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现SSA-BP麻雀算法优化BP神经网络时间序列预测(完整源码和数据);
2.数据集为excel,单列时间序列数据集,运行主程序main.m即可,其余为函数文件,无需运行;
3.优化参数为神经网络的权值和偏置,命令窗口输出RMSE、MAPE、MAE、R2等评价指标;
4.运行环境Matlab2018b及以上;
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整源码和数据获取方式资源出下载Matlab实现SSA-BP麻雀算法优化BP神经网络时间序列预测 。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 4;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测

%%  划分数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end

%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);

[t_train, ps_output] = mapminmax(T_train,0,1);
t_test = mapminmax('apply',T_test,ps_output);

%% 节点个数
inputnum  = size(p_train, 1); % 输入层节点数
hiddennum = 15;                % 隐藏层节点数
outputnum = size(t_train, 1); % 输出层节点数
% CSDN 机器学习之心

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/488137.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

DRC检查及丝印的调整

DRC检查及丝印的调整 综述:本文主要讲述AD软件中DRC检查、丝印的调整以及logo的添加的相关步骤,附加logo添加的脚本链接和大量操作图片,使步骤详细直观。 1. 点击“工具”→“设计规则检查”→“运行DRC”。(一开始可以只开启电…

利用云手机技术,开拓海外社交市场

近年来,随着科技的不断进步,云手机技术逐渐在海外社交营销领域崭露头角。其灵活性、成本效益和全球性特征使其成为海外社交营销的利器。那么,究竟云手机在海外社交营销中扮演了怎样的角色呢? 首先,云手机技术能够消除地…

LLM - 大语言模型的指令微调(Instruction Tuning) 概述

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://blog.csdn.net/caroline_wendy/article/details/137009993 大语言模型的指令微调(Instruction Tuning)是一种优化技术,通过在特定的数据集上进一步训练大型语言模型(LLMs)&a…

javaWeb个人日记(博客)管理系统

一、简介 在快节奏的生活中,记录生活点滴、感悟和思考是一种重要的方式。基于此,我设计了一个基于JavaWeb的个人日记本系统,旨在帮助用户轻松记录并管理自己的日记。该系统包括登录、首页、日记列表、写日记、日记分类管理和个人中心等功能&…

mysql - 缓存

缓存 InnoDB存储引擎在处理客户端的请求时,当需要访问某个页的数据时,就会把完整的页的数据全部加载到内存中,也就是说即使我们只需要访问一个页的一条记录,那也需要先把整个页的数据加载到内存中。将整个页加载到内存中后就可以…

命令模式(请求与具体实现解耦)

目录 前言 UML plantuml 类图 实战代码 模板 Command Invoker Receiver Client 前言 命令模式解耦了命令请求者(Invoker)和命令执行者(receiver),使得 Invoker 不再直接引用 receiver,而是依赖于…

Java基础--128陷阱

问题引入 Integer a 123; Integer b 123; System.out.println(ab); 结果为true。 但是如果代码如下 Integer a 1230;Integer b 1230;System.out.println(ab); 这个的结果就是false。 问题解决 当Integer a 123时,其实他底层自动转换成了Integer a Inte…

Learn OpenGL 29 延迟着色法

延迟着色法 我们现在一直使用的光照方式叫做正向渲染(Forward Rendering)或者正向着色法(Forward Shading),它是我们渲染物体的一种非常直接的方式,在场景中我们根据所有光源照亮一个物体,之后再渲染下一个物体,以此类推。它非常…

网络安全-文件包含

一、php://input 我们先来看一个简单的代码 <meta charset"utf8"> <?php error_reporting(0); $file $_GET["file"]; if(stristr($file,"php://filter") || stristr($file,"zip://") || stristr($file,"phar://&quo…

Windows如何搭建 ElasticSearch 集群

单机 & 集群 单台 Elasticsearch 服务器提供服务&#xff0c;往往都有最大的负载能力&#xff0c;超过这个阈值&#xff0c;服务器 性能就会大大降低甚至不可用&#xff0c;所以生产环境中&#xff0c;一般都是运行在指定服务器集群中。 除了负载能力&#xff0c;单点服务器…

Redis到底是多线程还是单线程?

Redis6.0之前&#xff1a;是单线程模式。 Redis6.0之后&#xff1a;Redis的IO线程是多线程&#xff0c;worker线程是单线程。 Redis6.0之前&#xff1a;单线程 Redis6.0之后&#xff1a;Redis的IO线程是多线程&#xff0c;worker线程是单线程。

iOS开发进阶(九):OC混合开发嵌套H5应用并互相通信

文章目录 一、前言二、嵌套H5应用并实现双方通信2.1 WKWebView 与JS 原生交互2.1.1 H5页面嵌套2.1.2 常用代理方法2.1.3 OC调用JS方法2.1.4 JS调用OC方法 2.2 JSCore 实现原生与H5交互2.2.1 OC调用H5方法并传参2.2.2 H5给OC传参 2.3 UIWebView的基本用法2.3.1 H5页面嵌套2.3.2 …

面试算法-101-重排链表

题目 给定一个单链表 L 的头节点 head &#xff0c;单链表 L 表示为&#xff1a; L0 → L1 → … → Ln - 1 → Ln 请将其重新排列后变为&#xff1a; L0 → Ln → L1 → Ln - 1 → L2 → Ln - 2 → … 不能只是单纯的改变节点内部的值&#xff0c;而是需要实际的进行节点交…

使用mid360从0开始搭建实物机器人入门级导航系统,基于Fast_Lio,Move_Base

Introduction 本文原本只是自己在拿到mid360后&#xff0c;开始进行开发过程的一些问题和学习的记录。毕竟实物和仿真还是有很多不同&#xff0c;且由于碰到的问题也比较多&#xff0c;READEME也越来越详细&#xff0c;所以就干脆整合起来&#xff0c;做成了一篇使用mid360的搭…

python、execl数据分析(数据描述)

一 python 1.各函数 1.1python库的安装与导入 #pip install os#pip install matplotlib#pip install seaborn#pip install scikit-learn#pip install scipy#修 改 工 作 目 录import osos.getcwd () # 查看当前工作环境os.chdir( F :\my course\database ) # 修改工作环境o…

Spark基于DPU Snappy压缩算法的异构加速方案

一、总体介绍 1.1 背景介绍 Apache Spark是专为大规模数据计算而设计的快速通用的计算引擎&#xff0c;是一种与 Hadoop 相似的开源集群计算环境&#xff0c;但是两者之间还存在一些不同之处&#xff0c;这些不同之处使 Spark 在某些工作负载方面表现得更加优越。换句话说&am…

高效物联网连接技术创新:ECWAN边缘协同自组网的未来——基于ChirpLAN窄带扩频技术的无线混合组网

物联网是指将各种物理设备通过互联网进行连接和通信的技术。它是一个庞大的网络&#xff0c;由传感器、设备、网络和云服务组成&#xff0c;旨在实现对物体的远程监测、控制和数据采集。 基于ChirpLAN窄带扩频技术的无线混合组网协议ChirpLAN&#xff0c;ChirpLAN是基于其自有的…

将 SOC 集成到应用程序安全中以增强网络弹性

从历史上看&#xff0c;安全运营中心 (SOC) 和应用程序安全 (AppSec) 计划在组织的更广泛的网络安全框架内作为不同的实体运行。SOC 一直是实时威胁检测、分析和响应、监控网络恶意活动迹象以及管理事件响应以减轻潜在损害的据点。 相反&#xff0c;AppSec 专注于网络安全的预…

JavaWeb——过滤器

Filter也称之为过滤器&#xff0c;它是Servlet技术中最实用的技术&#xff0c;Web开发人员通过Filter技术&#xff0c;对web服务器管理的所有web资源&#xff1a;例如Jsp, Servlet, 静态图片文件或静态 html 文件等进行拦截&#xff0c;从而实现一些特殊的功能。例如实现URL级别…

学会Sass的高级用法,减少样式冗余

在当今的前端开发领域&#xff0c;样式表语言的进步已经显著提升了代码组织性和可维护性。Sass&#xff08;Syntactically Awesome Style Sheets&#xff09;作为CSS预处理器的翘楚&#xff0c;以其强大的变量、嵌套规则、混合宏&#xff08;mixin&#xff09;、循环和函数等高…