(树) 剑指 Offer 07. 重建二叉树 ——【Leetcode每日一题】

❓剑指 Offer 07. 重建二叉树

难度:中等

输入某二叉树的 前序遍历中序遍历 的结果,请构建该二叉树并返回其根节点。

假设输入的前序遍历和中序遍历的结果中都不含重复的数字。

示例 1:

在这里插入图片描述
Input: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
Output: [3,9,20,null,null,15,7]

示例 2:

Input: preorder = [-1], inorder = [-1]
Output: [-1]

限制

  • 0 <= 节点个数 <= 5000

注意:本题与 105. 从前序与中序遍历序列构造二叉树 相同。

💡思路:递归

二叉树前序遍历的顺序为:

  • 先遍历根节点;
    • 随后递归地遍历左子树
    • 最后递归地遍历右子树

二叉树中序遍历的顺序为:

  • 递归地遍历左子树;
  • 随后遍历根节点;
  • 最后递归地遍历右子树

在「递归」地遍历某个子树的过程中,我们也是将这颗子树看成一颗全新的树,按照上述的顺序进行遍历。挖掘「前序遍历」和「中序遍历」的性质,我们就可以得出本题的做法。

前序遍历的第一个值为根节点的值,使用这个值将 中序遍历 结果分成两部分:

  • 左部分 为树的左子树中序遍历结果;
  • 右部分 为树的右子树中序遍历的结果;
  • 然后分别对左右子树递归地求解。

在这里插入图片描述
只要我们在中序遍历中定位到根节点,那么我们就可以分别知道左子树和右子树中的节点数目。

  • 由于同一颗子树的 前序遍历中序遍历长度显然是相同 的,因此我们就可以对应到前序遍历的结果中,对上述形式中的所有左右括号进行定位。
  • 这样以来,我们就知道了左子树的前序遍历和中序遍历结果,以及右子树的前序遍历和中序遍历结果,我们就可以递归地对构造出左子树和右子树,再将这两颗子树接到根节点的左右位置。

🍁代码:(C++、Java)

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
private:
    unordered_map<int, int> index;//缓存中序遍历数组每个值对应的索引

    TreeNode* myBuildTree(const vector<int> preorder, int preL, int preR, int inL){
        if(preL > preR) return nullptr;

        // 前序遍历中的第一个节点就是根节点
        TreeNode* root = new TreeNode(preorder[preL]);
        // 在中序遍历中定位根节点
        int idx = index[root->val];
        // 得到左子树中的节点数目
        int len = idx - inL;

        root->left = myBuildTree(preorder, preL + 1, preL + len, inL);
        root->right = myBuildTree(preorder, preL + len + 1, preR, inL + len + 1);
        
        return root;
    }

public:
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        for(int i = 0; i < preorder.size(); i++){
            index[inorder[i]] = i;
        }
        return myBuildTree(preorder, 0, preorder.size() - 1, 0);
    }
};

Java

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    private Map<Integer, Integer> index = new HashMap<>();//缓存中序遍历数组每个值对应的索引
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        for (int i = 0; i < preorder.length; i++){
            index.put(inorder[i], i);
        }
        return myBuildTree(preorder, 0, preorder.length - 1, 0);
    }
    private TreeNode myBuildTree(int[] preorder, int preL, int preR, int inL){
        if(preL > preR) return null;

        // 前序遍历中的第一个节点就是根节点
        TreeNode root = new TreeNode(preorder[preL]);
        // 在中序遍历中定位根节点
        int idx = index.get(root.val);
        // 得到左子树中的节点数目
        int len = idx - inL;

        root.left = myBuildTree(preorder, preL + 1, preL + len, inL);
        root.right = myBuildTree(preorder, preL + len + 1, preR, inL + len + 1);
        
        return root;
    }
}

🚀 运行结果:

在这里插入图片描述

🕔 复杂度分析:

  • 时间复杂度 O ( n ) O(n) O(n),其中 n 是树中的节点个数。
  • 空间复杂度 O ( n ) O(n) O(n),除去返回的答案需要的 O ( n ) O(n) O(n) 空间之外,我们还需要使用 O ( n ) O(n) O(n) 的空间存储哈希映射,以及 O ( h ) O(h) O(h)(其中 h 是树的高度)的空间表示递归时栈空间。这里 h < n,所以总空间复杂度为 O ( n ) O(n) O(n)

题目来源:力扣。

放弃一件事很容易,每天能坚持一件事一定很酷,一起每日一题吧!
关注我LeetCode主页 / CSDN—力扣专栏,每日更新!

注: 如有不足,欢迎指正!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/48796.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[NLP]Huggingface模型/数据文件下载方法

问题描述 作为一名自然语言处理算法人员&#xff0c;hugging face开源的transformers包在日常的使用十分频繁。在使用过程中&#xff0c;每次使用新模型的时候都需要进行下载。如果训练用的服务器有网&#xff0c;那么可以通过调用from_pretrained方法直接下载模型。但是就本人…

5.2.tensorRT基础(2)-使用onnx解析器来读取onnx文件(源码编译)

目录 前言1. ONNX解析器2. libnvonnxparser.so3. 源代码编译4. 补充知识总结 前言 杜老师推出的 tensorRT从零起步高性能部署 课程&#xff0c;之前有看过一遍&#xff0c;但是没有做笔记&#xff0c;很多东西也忘了。这次重新撸一遍&#xff0c;顺便记记笔记。 本次课程学习 t…

已解决:多线程环境中,新线程在使用cout函数打印输出到显示器出现数据混乱的情况

错误展示错误原因解决办法1. 在本问题情况下&#xff1a;使用printf函数替代cout&#xff1a;2. 使用互斥锁使 cout函数线程保持原子状态 什么是原子操作&#xff1f; 错误展示 最近学习多线程的时候&#xff0c;创建了一堆线程&#xff0c;然后每个线程都运行这个方法&#x…

大数据Flink(五十二):Flink中的批和流以及性能比较

文章目录 Flink中的批和流以及性能比较 ​​​​​​​​​​​​​​一、Flink中的批和流

LeetCode 2500. Delete Greatest Value in Each Row【数组,排序】简单

本文属于「征服LeetCode」系列文章之一&#xff0c;这一系列正式开始于2021/08/12。由于LeetCode上部分题目有锁&#xff0c;本系列将至少持续到刷完所有无锁题之日为止&#xff1b;由于LeetCode还在不断地创建新题&#xff0c;本系列的终止日期可能是永远。在这一系列刷题文章…

基于深度学习的裂纹图像分类研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

消息队列(一)-- RabbitMQ入门(1)

初识 RabbitMQ 核心思想&#xff1a;接收并转发消息。可以把它想象成一个邮局。 producer&#xff1a;生产者 queue&#xff1a;队列 consumer&#xff1a;消费者什么是消息队列 MQ&#xff08;Message Queue&#xff09;&#xff1a;本质是队列&#xff0c;FIFO先入先出&…

k8s集群环境的搭建

1.环境规划 1.1 集群类型 Kubernetes集群大致分为两类&#xff1a;一主多从和多主多从。 一主多从&#xff1a;一个Master节点和多台Node节点&#xff0c;搭建简单&#xff0c;但是有单机故障风险&#xff0c;适合用于测试环境。 多主多从&#xff1a;多台Master和多台Node节点…

了解Unity编辑器之组件篇Physics 2D(十二)

一、Area Effector 2D区域施加力&#xff09;&#xff1a;用于控制区域施加力的行为 Use Collider Mask&#xff08;使用碰撞器遮罩&#xff09;&#xff1a;启用后&#xff0c;区域施加力仅会作用于特定的碰撞器。可以使用Collider Mask属性选择要作用的碰撞器。 Collider Ma…

opencv-22 图像几何变换01-缩放-cv2.resize()(图像增强,图像变形,图像拼接)

什么是几何变换&#xff1f; 几何变换是计算机图形学中的一种图像处理技术&#xff0c;用于对图像进行空间上的变换&#xff0c;而不改变图像的内容。这些变换可以通过对图像中的像素位置进行调整来实现。 常见的几何变换包括&#xff1a; 平移&#xff08;Translation&#x…

MySQL-MHA高可用配置及故障切换

MySQL-MHA 一、MHA概述&#xff1a;1.概述&#xff1a;2.MHA的组成&#xff1a;3.MHA的特点&#xff1a;4.MHA的工作原理&#xff1a; 二、搭建MySQL MHA&#xff1a;1.配置主从复制&#xff1a;2.配置MHA&#xff1a;3.manager与node工具使用&#xff1a;4.在 manager 节点上配…

vue3+Luckysheet实现表格的在线预览编辑(electron可用)

前言&#xff1a; 整理中 官方资料&#xff1a; 1、github 项目地址https://github.com/oy-paddy/luckysheet-vue-importAndExport/tree/master/https://github.com/oy-paddy/luckysheet-vue-importAndExport/tree/master/ 2、xlsx vue3 json数据导出excel_vue3导出excel_羊…

vue项目登录页面实现记住用户名和密码

vue项目登录页面实现记住用户名和密码 记录一下实现的逻辑&#xff0c;应该分两步来理解这个逻辑 首次登录&#xff0c;页面没有用户的登录信息&#xff0c;实现逻辑如下&#xff1a; 用户输入用户名和密码登录&#xff0c;用户信息为名为form的响应式对象&#xff0c;v-model…

【Linux下6818开发板(ARM)】硬件空间挂载

(꒪ꇴ꒪ ),hello我是祐言博客主页&#xff1a;C语言基础,Linux基础,软件配置领域博主&#x1f30d;快上&#x1f698;&#xff0c;一起学习&#xff01;送给读者的一句鸡汤&#x1f914;&#xff1a;集中起来的意志可以击穿顽石!作者水平很有限&#xff0c;如果发现错误&#x…

查看8080端口会不会被占用

相关命令 查看8080端口会不会被占用 netstat -ano | findstr 8080 查看 终止占用端口xxx的进程 taskkill /f /pid xxx 具体步骤 第一步&#xff1a;点击起始菜单&#xff08;或是通过winR快捷键&#xff09;&#xff0c;在输入框中输入cmd&#xff0c;点击确定&#x…

MySQL 服务器的调优策略

点击上方↑“追梦 Java”关注&#xff0c;一起追梦&#xff01; 在工作中&#xff0c;我们发现慢查询一般有2个途径&#xff0c;一个是被动的&#xff0c;一个是主动的。被动的是当业务人员反馈某个查询界面响应的时间特别长&#xff0c;你才去处理。主动的是通过通过分析慢查询…

Rabbitmq的安装与使用(Linux版)

目录 Rabbitmq安装 1.在Ubuntu上安装RabbitMQ&#xff1a; 打开终端&#xff0c;运行以下命令以更新软件包列表&#xff1a; 安装RabbitMQ&#xff1a; 安装完成后&#xff0c;RabbitMQ服务会自动启动。你可以使用以下命令来检查RabbitMQ服务状态&#xff1a; 2.在CentOS…

Java集合框架的全面分析和性能增强

Java集合框架的全面分析和性能增强 &#x1f497;摘要&#xff1a;&#x1f497; 1. Java集合框架概述&#x1f497;1.1 Collection接口1.1.1 List接口1.1.2 Set接口1.1.3 Queue接口 &#x1f497;1.2 Map接口 &#x1f497;2. Java集合框架性能优化&#x1f497;2.1 选择合适的…

idea项目依赖全部找不到

目录 1&#xff0c;出错现象2&#xff0c;解决3&#xff0c;其他尝试 1&#xff0c;出错现象 很久没打开的Java项目&#xff0c;打开之后大部分依赖都找不到&#xff0c;出现了所有的含有import语句的文件都会报错和一些注解报红报错&#xff0c;但pom文件中改依赖是确实被引入…

线性模型学习

代码实现 import numpy as np import matplotlib.pyplot as pltx_data [1.0, 2.0, 3.0] y_data [2.0, 4.0, 6.0]def forward(x):return x * wdef loss(x, y):y_pred forward(x)return (y_pred - y) * (y_pred - y)w_list [] mse_list [] for w in np.arange(0.0, 4.1, 0.…