C++11:可变参数模板/lambda表达式

1.可变参数模板

C++11的新特性可变参数模板能够让我们创建可以接受可变参数的函数模板和类模板,相比C++98和C++03,类模板和函数模板中只能含固定数量的模板参数,可变参数模板无疑是一个巨大的改进。可是可变参数模板比较抽象,因此这里只会写出够我们使用的部分。

 下面是一个基本可变参数的函数模板

// Args是一个模板参数包,args是一个函数形参参数包
// 声明一个参数包Args...args,这个参数包中可以包含0到任意个模板参数。
template <class ...Args>
void ShowList(Args... args)
{}

上面的参数args前面有省略号,所以它就是一个可变模版参数,我们把带省略号的参数称为“参数
包”,它里面包含了0到N(N>=0)个模版参数。我们无法直接获取参数包args中的每个参数的,只能通过展开参数包的方式来获取参数包中的每个参数,这是使用可变模版参数的一个主要特点,也是最大的难点,即如何展开可变模版参数。

递归函数方式展开参数包

//递归终止函数
template <class T>
void showList(const T& t)
{
	cout << y << endl;
}
//展开函数
template<class T,class ...Args>
void showList(T value, Args... args)
{
	cout << value << " ";
	showList(args...);
}
int main()
{
	showList(1);
	showList(1,'A');
	showList(1,'A',std::string("sort"));

	return 0;
}

 代码分析:

①showList(1): 如果只有一个参数,那会直接调用第一个showList函数。

②showList(1,'A'): 匹配到第二个showList函数后,先将1打印出来。然后通过递归,看看args里面有多少个参数,如果只有一个,比如这里的'A',那么就会去调用第一个showList函数。

③showList(1,'A',"sort"): 匹配到第二个showList函数后,先将1打印出来。然后通过递归,看看args里面有多少个参数,这里有两个,那么继续调用第二个showList函数,此时的value变成了'A',依次类推。

逗号表达式展开参数包

这种展开参数包的方式,不需要通过递归终止函数,是直接在expand函数体中展开的, printarg不是一个递归终止函数,只是一个处理参数包中每一个参数的函数。这种就地展开参数包的方式实现的关键是逗号表达式。我们知道逗号表达式会按顺序执行逗号前面的表达式。

expand函数中的逗号表达式:(printarg(args), 0),也是按照这个执行顺序,先执行printarg(args),再得到逗号表达式的结果0。同时还用到了C++11的另外一个特性——初始化列表,通过初始化列表来初始化一个变长数组, {(printarg(args), 0)...}将会展开成((printarg(arg1),0),(printarg(arg2),0), (printarg(arg3),0), etc... ),最终会创建一个元素值都为0的数组int arr[sizeof...(Args)]。由于是逗号表达式,在创建数组的过程中会先执行逗号表达式前面的部分printarg(args)打印出参数,也就是说在构造int数组的过程中就将参数包展开了,这个数组的目的纯粹是为了在数组构造的过程展开参数包。

template <class T>
void PrintArg(T t)
{
	cout << t << " ";
}
//展开函数
template <class ...Args>
void ShowList(Args... args)
{
	int arr[] = { (PrintArg(args), 0)... };
	cout << endl;
}
int main()
{
	ShowList(1);
	ShowList(1, 'A');
	ShowList(1, 'A', std::string("sort"));
	return 0;
}

STL容器中的empalce相关接口函数:

template <class... Args>
void emplace_back (Args&&... args)

首先我们看到的emplace系列的接口,支持模板的可变参数,并且万能引用。那么相对insert和
emplace系列接口的优势到底在哪里呢

int main()
{
	std::list< std::pair<int, char> > mylist;
	// emplace_back支持可变参数,拿到构建pair对象的参数后自己去创建对象
	// 那么在这里我们可以看到除了用法上,和push_back没什么太大的区别
	mylist.emplace_back(10, 'a');
	mylist.emplace_back(20, 'b');
	mylist.emplace_back(make_pair(30, 'c'));
	mylist.push_back(make_pair(40, 'd'));
	mylist.push_back({ 50, 'e' });
	for (auto e : mylist)
		cout << e.first << ":" << e.second << endl;
	return 0;
}

2.lambda表达式

在C++98中,如果想要对一个数据集合中的元素进行排序,可以使用std::sort方法

int main()
{
	int array[] = { 4,1,8,5,3,7,0,9,2,6 };
	// 默认按照小于比较,排出来结果是升序
	std::sort(array, array + sizeof(array) / sizeof(array[0]));
	// 如果需要降序,需要改变元素的比较规则
	std::sort(array, array + sizeof(array) / sizeof(array[0]), greater<int>());
	return 0;
}

如果待排序元素为自定义类型,还需要我们定义排序时的比较规则。随着C++语法的发展,人们开始觉得这种写法太复杂了,每次为了实现一个algorithm算法,都要重新去写一个类,如果每次比较的逻辑不一样,还要去实现多个类,特别是相同类的命名,这些都给编程者带来了极大的不便。因此,在C++11语法中出现了Lambda表达式。

先来看看lambda表达式的例子:

//自定义类型
struct Goods
{
	string _name; // 名字
	double _price; // 价格
	int _evaluate; // 评价
	Goods(const char* str, double price, int evaluate)
		:_name(str)
		, _price(price)
		, _evaluate(evaluate)
	{}
};
int main()
{
	vector<Goods> v = { { "苹果", 2.1, 5 }, { "香蕉", 3, 4 }, { "橙子", 2.2,
	3 }, { "菠萝", 1.5, 4 } };

	//比较价格
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._price < g2._price; });

	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._price > g2._price; });

	//比较评价
	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._evaluate < g2._evaluate; });

	sort(v.begin(), v.end(), [](const Goods& g1, const Goods& g2) {
		return g1._evaluate > g2._evaluate; });
	return 0;
}

上述代码就是使用C++11中的lambda表达式来解决,可以看出lambda表达式实际是一个匿名函数。

lambda表达式语法

ambda表达式书写格式:[capture-list] (parameters) mutable -> return-type { statement}

lambda表达式各部分说明:


[capture-list] : 捕捉列表,该列表总是出现在lambda函数的开始位置,编译器根据[]来判断接下来的代码是否为lambda函数,捕捉列表能够捕捉上下文中的变量供lambda函数使用。

 
(parameters):参数列表。与普通函数的参数列表一致,如果不需要参数传递,则可以连同()一起省略

 
mutable:默认情况下,lambda函数总是一个const函数,mutable可以取消其常量性。使用该修饰符时,参数列表不可省略(即使参数为空)。

 

->returntype:返回值类型。用追踪返回类型形式声明函数的返回值类型,没有返回值时此部分可省略。返回值类型明确情况下,也可省略,由编译器对返回类型进行推导。

 
{statement}:函数体。在该函数体内,除了可以使用其参数外,还可以使用所有捕获到的变量。

注意:

在lambda函数定义中,参数列表和返回值类型都是可选部分,而捕捉列表和函数体可以为空。因此C++11中最简单的lambda函数为:[]{}; 该lambda函数不能做任何事情。

int main()
{
	// 最简单的lambda表达式, 该lambda表达式没有任何意义
	[] {};
	// 省略参数列表和返回值类型,返回值类型由编译器推导为int
	int a = 3, b = 4;
	[=] {return a + 3; };
	// 省略了返回值类型,无返回值类型
	auto fun1 = [&](int c) {b = a + c; };
	fun1(10)
		cout << a << " " << b << endl;
	// 各部分都很完善的lambda函数
	auto fun2 = [=, &b](int c)->int {return b += a + c; };
	cout << fun2(10) << endl;
	// 复制捕捉x
	int x = 10;
	auto add_x = [x](int a) mutable { x *= 2; return a + x; };
	cout << add_x(10) << endl;
	return 0;
}

通过上述例子可以看出,lambda表达式实际上可以理解为无名函数,该函数无法直接调用,如果想要直接调用,可借助auto将其赋值给一个变量。

捕获列表说明:

捉列表描述了上下文中那些数据可以被lambda使用,以及使用的方式传值还是传引用。

[var]:表示值传递方式捕捉变量var

 
[=]:表示值传递方式捕获所有父作用域中的变量(包括this)

 
[&var]:表示引用传递捕捉变量var

 
[&]:表示引用传递捕捉所有父作用域中的变量(包括this)

 
[this]:表示值传递方式捕捉当前的this指针

注意:
a. 父作用域指包含lambda函数的语句块

b. 语法上捕捉列表可由多个捕捉项组成,并以逗号分割。比如:[=, &a, &b]:以引用传递的方式捕捉变量a和b,值传递方式捕捉其他所有变量[&,a, this]:值传递方式捕捉变量a和this,引用方式捕捉其他变量

c. 捕捉列表不允许变量重复传递,否则就会导致编译错误。比如:[=, a]:=已经以值传递方式捕捉了所有变量,捕捉a重复

d. 在块作用域以外的lambda函数捕捉列表必须为空。

e. 在块作用域中的lambda函数仅能捕捉父作用域中局部变量,捕捉任何非此作用域或者非局部变量都会导致编译报错。

f. lambda表达式之间不能相互赋值,即使看起来类型相同

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/4867.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

vue路由守卫死循环及路由守卫使用

当前业务要求&#xff1a; 通过判断本地sessionstorge判断当前是否需要登陆页面 问题场景&#xff1a;用户登陆进入页面内部&#xff0c;点击退出登录&#xff0c;清除本地用户信息&#xff0c;页面跳转至登陆页面&#xff0c;使用浏览器的回退可以正常返回至项目内部。需要改…

kettle开发篇-更新-Day38

目录 前言&#xff1a; 一、更新组件介绍 1.1界面 1.2废话介绍 1.3重点解释 二、应用案例 2.1转换效果 2.2转换简介 三、总结 前言&#xff1a; 前面我们通过oracle的索引来处理单表超1亿的数据量表的查询问题&#xff0c;通过针对主键&#xff0c;展示的维度做多套索引…

如何使用码匠连接 GaussDB

目录 在码匠中集成 GaussDB 在码匠中使用 GaussDB 关于码匠 GaussDB 是华为推出的一个高性能、高可靠、高安全的分布式数据库管理系统。它采用多活架构&#xff0c;支持全球数据同步&#xff0c;可实现数据的实时同步和容灾备份&#xff0c;可满足不同业务场景下的数据管理…

《钢琴调律原理及应用》 笔记

【第一章 绪论】第一节 钢琴调律的概念 美国人威廉布雷德怀特于 1917 年发表了世界上第一部关于钢琴调律理论与技术的著作&#xff0c;书名为《钢琴调律与相关技术》 福岛琢郎于1950年发表一部名为《钢琴的构造调律修理》的专著 80年代初&#xff0c;在沈阳音院任教的张琨先生…

蓝桥杯正确的解题姿势

在做算法题的过程中最忌讳的就是上来就一顿乱敲&#xff0c;一开始我就是这样&#xff0c;但随着不断的刷题和老师的指导&#xff0c;总结了自己的刷题方法 示例题目 三角回文数 问题描述 对于正整数 n, 如果存在正整数 k使得 n123...kk(k1)/2 , 则 n 称为三角数。例如, 66066 …

弱监督实例分割 Box-supervised Instance Segmentation with Level Set Evolution 论文笔记

弱监督实例分割 Box-supervised Instance Segmentation with Level Set Evolution 论文笔记一、Abstract二、引言三、相关工作3.1 基于 Box 的实例分割3.2 基于层级的分割四、提出的方法4.1 图像分割中的层级模型4.2 基于 Box 的实例分割在 Bounding Box 内的层级进化输入的数据…

CentOS7+LAMP+DVWA靶机搭建

一、什么是DVWA Damn Vulnerable Web Application (DVWA)(译注&#xff1a;可以直译为&#xff1a;"该死的"不安全Web应用程序)&#xff0c;是一个编码差的、易受攻击的 PHP/MySQL Web应用程序。 它的主要目的是帮助信息安全专业人员在合法的环境中&#xff0c;练习…

【自动化】selenium配置步骤 | 备份本地资源

1、安装jdk 2、设置环境变量 .1、CLASSPATH .;%JAVA_HOME%\lib\dt.jar;%JAVA_HOME%\lib\tools.jar .2、JAVA_HOME C:\Program Files\Java\jdk1.8.0_231 .3、PATH 新增 %JAVA_HOME%\bin 3、安装chrome 版本&#xff1a;85.0.4183.83 4、禁用chrom…

AOP配置管理

AOP配置管理4&#xff0c;AOP配置管理4.1 AOP切入点表达式4.1.1 语法格式4.1.2 通配符4.1.3 书写技巧4.2 AOP通知类型4.2.1 类型介绍4.2.2 环境准备4.2.3 通知类型的使用前置通知后置通知环绕通知基本使用注意事项返回后通知异常后通知通知类型总结知识点1&#xff1a;After知识…

基于SpringBoot+SpringCloud+Vue前后端分离项目实战 --开篇

本文目录前言做项目的三大好处强强联手(天狗组合)专栏作者简介专栏的优势后端规划1. SpringBoot 和 SpringCloud 的选择2. Mybatis 和 MybatisPlus 和 JPA 的选择3. MySQL 和 Mongodb 的选择4. Redis 和 RocketMQ5. 后端规划小总结后端大纲提前掌握的知识点一期SpringBoot二期S…

经典文献阅读之--LOCUS 2.0(LiDAR为中心的多传感器LSLAM)

0. 简介 在20年DARPA地下挑战赛中CoSTAR队伍提出了LOCUS这个深度学习模块&#xff0c;在两年后LOCUS2.0出世&#xff0c;LOCUS 2.0包括一种新的基于法线的广义迭代最近点&#xff08;GICP&#xff09;公式&#xff0c;该公式减少了点云对齐的计算时间&#xff0c;一种自适应体…

PowerTCP Sockets for .NET 6.1.5 Crack

PowerTCP Sockets for .NET PowerTCP Sockets for .NET 包含易于使用的 TCP 和 UDP 组件&#xff0c;可帮助您创建 Internet 客户端应用程序&#xff0c;只需几行代码和方便的事件。Ping 组件使用 ICMP、UDP 和 TCP 启用服务器验证&#xff0c;而跟踪组件执行异步跟踪路由以实…

三、数据链路层

&#xff08;一&#xff09;纠错与检错1、奇偶校验码&#xff08;再研究下&#xff0c;原理知道&#xff0c;具体过程无法重现&#xff09;分为奇校验和偶校验&#xff0c;奇偶校验位在首部或尾部&#xff0c;奇偶校验满信息位奇偶校验位&#xff08;1&#xff09;原理&#xf…

多线程 (七) 阻塞队列的使用及其实现

&#x1f389;&#x1f389;&#x1f389;点进来你就是我的人了 博主主页&#xff1a;&#x1f648;&#x1f648;&#x1f648;戳一戳,欢迎大佬指点!人生格言&#xff1a;当你的才华撑不起你的野心的时候,你就应该静下心来学习! 欢迎志同道合的朋友一起加油喔&#x1f9be;&am…

科大奥瑞物理实验——交流电桥

实验名称&#xff1a;交流电桥 1. 实验目的&#xff1a; 掌握电桥平衡原理、平衡条件&#xff1b;理解交流电桥构造&#xff0c;熟悉交流电桥平衡方法&#xff1b;分析平衡过程中各桥臂调节顺序&#xff0c;判断最佳平衡点&#xff1b;理解复阻抗概念&#xff0c;电桥平衡时复…

虚拟机centos7配置Hadoop单节点伪分布配置教程

系列文章目录 centos7配置静态网络常见问题归纳_张小鱼༒的博客-CSDN博客 centos7克隆虚拟机完成后的的一些配置介绍_张小鱼༒的博客-CSDN博客 文章目录 目录 系列文章目录 文章目录 前言 一、前期准备 二、Hadoop介绍 2.1、Apache Hadoop 2.2、Cloudera Hadoop 2.3…

基于Vision Transformer的图像去雾算法研究与实现(附源码)

基于Vision Transformer的图像去雾算法研究与实现 0. 服务器性能简单监控 \LOG_USE_CPU_MEMORY\文件夹下的use_memory.py文件可以实时输出CPU使用率以及内存使用率&#xff0c;配合nvidia-smi监控GPU使用率 可以了解服务器性能是否足够&#xff1b;运行时在哪一步使用率突然…

第一个vue-cli项目

第一个vue-cli项目 12.1、什么是vue-cli vue-cli官方提供的一个脚手架&#xff0c;用于快速生成一个vue的项目模板&#xff1b;   预先定义好的目录结构及基础代码&#xff0c;就好比咱们在创建Maven项目时可以选择创建一个骨架项目&#xff0c;这个估计项目就是脚手架&…

编写一个函数,输入一个日期,计算其距年底的时间

--编写一个函数&#xff0c;输入一个日期&#xff0c;计算其距年底的时间 create or replace function f_end(i_date varchar2) return number is/*声明四个变量&#xff0c;v_end:存放输入的日期的年底日期 v_date:存放经过转化为日期型的输入字符串 v_minus:存放两个日期之差…

Springboot怎么实现WebSocket通信(二)

前言上一篇文章分享了单机模式下&#xff0c;websocket的基本使用方法&#xff0c;但在实际的业务中&#xff0c;通常是不会这样使用的&#xff0c;大部项目都是分布式部署的&#xff0c;一个工程布署了多个服务节点&#xff0c;前端并不直接请求具体服务节点&#xff0c;而是先…