AI大模型引领未来智慧科研暨ChatGPT在地学、GIS、气象、农业、生态、环境等领域中的应用

以ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问为代表AI大语言模型带来了新一波人工智能浪潮,可以面向科研选题、思维导图、数据清洗、统计分析、高级编程、代码调试、算法学习、论文检索、写作、翻译、润色、文献辅助阅读、文献信息提取、辅助论文审稿、新闻撰写、科技绘图、地学绘图(GIS地图绘制)、概念图生成、图像识别、教学课件、教学案例生成、基金润色、专业咨询、文件上传和处理、机器/深度学习训练与模拟、大模型API二次开发等特定任务,生成文本、图片、代码、语音、视频等不同形式的数据、模式和内容,成为不少科研工作者的第二大脑。本文通过大量生物、地球、农业、气象、生态、环境科学领域中案例,解锁大模型在科研、办公中的高级应用,一起探索如何优雅地使用大模型。

原文链接icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247683076&idx=2&sn=1d78a2d29246b6210fbe26d1849d2604&chksm=fa775339cd00da2f228b37a1d5aaa8904ebf5f356216b671c42c903a6e66a942d08e9b6be9a0&token=2005145084&lang=zh_CN#rd

专题一、开启大模型

1 开启大模型

1) 大模型的发展历程与最新功能

2) 大模型的强大功能与应用场景

3) 国内外经典大模型(ChatGPT、LLaMA、Gemini、DALL·E、Midjourney、Stable Diffusion、星火大模型、文心一言、千问等)

4) 如何优雅使用大模型

案例1.1:开启不同平台的大模型

案例1.2:GPT不同版本的使用

案例1.3:大模型文件上传和处理

专题二、基于ChatGPT大模型提问框架

2 提问框架(提示词、指令)

1) 专业大模型提示词,助你小白变专家

2) 超实用的通用提示词和提问框架

3) GPT store(GPT商店产品)及高级提问技巧

案例2.1:设定角色与投喂规则

案例2.2:行业专家指令合集

案例2.3:角色扮演与不同角度提问

案例2.4:分步提问与上下文关联

案例2.5:经典提问框架练习,提升模型效率

专题三、基于ChatGPT大模型的论文助手

3 基于AI大模型的论文助手

案例3.1:大模型论文润色中英文指令大全

案例3.2:使用大模型进行论文润色

案例3.3:使用大模型对英文文献进行搜索

案例3.4:使用大模型对英文文献进行问答和辅助阅读

案例3.5:使用大模型提取英文文献关键信息

案例3.6:使用大模型对论文进行摘要重写

案例3.7:使用大模型取一个好的论文标题

案例3.8:使用大模型写论文框架和调整论文结构

案例3.9:使用大模型对论文进行翻译

案例3.10:使用大模型对论文进行评论,辅助撰写审稿意见

案例3.11:使用大模型对论文进行降重

案例3.12:使用大模型查找研究热点

案例3.13:使用大模型对你的论文凝练成新闻和微信文案

案例3.14:使用大模型对拓展论文讨论

案例3.15:使用大模型辅助专著、教材、课件的撰写

专题四、基于ChatGPT大模型的数据清洗

3 基于ChatGPT的数据清洗

1) R语言和Python基础(勿需学会,能看懂即可)

2) 数据清洗方法(重复值、缺失值处理、异常值检验、标准化、归一化、数据长宽转换,数据分组聚合)

案例4.1:使用大模型指令随机生成数据

案例4.2:使用大模型指令读取数据

案例4.3:使用大模型指令进行数据清洗

案例4.4:使用大模型指令对农业气象数据进行预处理

案例4.5:使用大模型指令对生态数据进行预处理

专题五、基于ChatGPT大模型的统计分析

5 基于AI大模型的统计分析

1) 统计假设检验

2) 统计学三大常用检验及其应用场景

3) 方差分析、相关分析、回归分析

案例5.1:使用大模型对生态环境数据进行正态性检验、方差齐性检验

案例5.2:使用大模型进行t检验、F检验和卡方检验

案例5.3:使用大模型对生态环境数据进行方差分析、相关分析及回归分析

专题六、基于ChatGPT的经典统计模型

6 基于AI大模型的经典统计模型构建

案例6.1:基于AI辅助构建的混合线性模型在生态学中应用

案例6.2:基于AI辅助的全球尺度Meta分析及诊断、绘图

案例6.3:基于AI辅助的生态环境数据结构方程模型构建

案例6.4:基于AI辅助的贝叶斯优化及模型参数不确定性

专题七、基于ChatGPT大模型的机器学习

7 基于AI大模型的机器/深度学习

1) 机器/深度学习

2) AI大模型的底层逻辑和算法结构(GPT1-GPT4)

3) 机器学习监督学习(回归、分类)、非监督学习(降维、聚类)

4) 特征工程、数据分割、目标函数、参数优化、交叉验证、超参数寻优

5) 深度学习算法(神经网络、激活函数、交叉熵、优化器)

6) 卷积神经网络、长短期记忆网络(LSTM)

案例7.1:使用大模型指令构建回归模型(多元线性回归、随机森林、XGBoost、LightGBM等)

案例7.2:使用大模型指令构建分类模型(支持向量机、XGBoost等)

案例7.3:使用大模型指令构建降维模型

案例7.4:使用大模型指令构建聚类模型

案例7.5:使用大模型指令构建深度学习模型,实现预测和解释

专题八、ChatGPT的二次开发

8 基于AI大模型的二次开发

案例8.1:基于API构建自己的本地大模型

案例8.2:基于构建的本地大模型实现ChatGPT功能、模型评价和图像生成

案例8.3:ChatGPT Store构建方法

专题九、基于ChatGPT大模型的科研绘图

9 基于AI大模型的科研绘图

1) 使用大模型进行数据可视化

案例9.1:大模型科研绘图指定全集

案例9.2:使用大模型指令绘制柱状图(误差线)、散点图、相关网络图、热图、小提琴图、箱型图、雷达图、玫瑰图、气泡图、森林图、三元图、三维图等各类科研图

案例9.3:使用大模型指令对图形进行修改

专题十、基于ChatGPT大模型的GIS应用

10 基于AI大模型的GIS应用

1) R语言和Python空间数据处理主要方法

2) 基于AI大模型训练降尺度模型

3) 基于AI大模型处理矢量、栅格数据

4) 基于AI大模型处理多时相netCDF4数据

案例10.1:使用大模型绘制全球地图

案例10.2:使用大模型处理NASA气象多时相NC数据

案例10.3:使用大模型绘制全球植被类型分布图

案例10.4:使用大模型栅格数据并绘制全球植被生物量图

案例10.5:使用大模型处理遥感数据并进行时间序列分析

案例10.6:使用不同插值方法对气象数据进行插值

专题十一、基于ChatGPT大模型的项目基金助手

11 基于AI大模型的项目基金助手

1) 基金申请讲解

2) 基因申请助手

案例11.1:使用大模型进行项目选题和命题

案例11.2:使用大模型进行项目书写作和语言润色

案例11.3:使用大模型进行项目书概念图绘制

专题十二、基于大模型的AI绘图

12基于大模型的AI绘图

GPT DALL.E、Midjourney等AI大模型生成图片讲解

1) AI画图指令套路和参数设定

案例12.1:使用大模型进行图像识别

案例12.2:使用大模型生成图像指令合集

案例12.3:使用大模型指令生成概念图

案例12.4:使用大模型指令生成地球氮循环概念图

案例12.5:使用大模型指令生成土壤概念图

案例12.6:使用大模型指令生成病毒、植物、动物细胞结构图

案例12.7:使用大模型指令生成图片素材,从此不再缺图片素材

原文链接icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247683076&idx=2&sn=1d78a2d29246b6210fbe26d1849d2604&chksm=fa775339cd00da2f228b37a1d5aaa8904ebf5f356216b671c42c903a6e66a942d08e9b6be9a0&token=2005145084&lang=zh_CN#rd

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/485956.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

浅谈WPF之MVVM工具包

在之前的WPF示例中,都会用到一个MVVM框,也是一个比较常的MVVM框架,就是MVVM工具包【CommunityToolkit.Mvvm】,今天专门以一个简单的小例子,简述一下MVVM工具包的常见用法,仅供学习分享使用,如有…

Docker 安装 Nginx 容器,反向代理

Docker官方镜像https://hub.docker.com/ 寻找Nginx镜像 下载Nginx镜像 docker pull nginx #下载最新版Nginx镜像 (其实此命令就等同于 : docker pull nginx:latest ) docker pull nginx:xxx #下载指定版本的Nginx镜像 (xxx指具体版本号)检查当前所有Docker下载的镜像 docker…

Spring Security之认证过滤器

前言 上回我们探讨了关于Spring Security,着实复杂。这次咱们聊的认证过滤器就先聊聊认证功能。涉及到多方协同的功能,咱分开聊。也给小伙伴喘口气,嘻嘻。此外也是因为只有登录认证了,才有后续的更多功能集成的可能。 认证过滤器…

unity学习(69)——多人位置同步

简单的很,每个客户端向服务器发送位置信息,服务器再把这些位置信息发送给其他客户端。 1.客户端发送。 1.1在SocketModel脚本中添加一个新的类MoveDTO public class MoveDTO {public string Id{get; set;}public int Dir{get;set;}public Assets.Mode…

Leetcode第13题:罗马数转为十进制数

利用等价换算法将罗马数转为十进制数 class Solution:def romanToInt(self, s: str) -> int:roman_map{I:1,V:5,X:10,L:50,C:100,D:500,M:1000}before_val,countroman_map[s[0]],0for c in s:valroman_map[c]if val<before_val:countvalelse:countcount-val2*(val-befor…

echarts 柱形图如何让其中一个柱子的颜色跟其他柱子不同

如何让其中一个柱子的颜色跟其他柱子不同 series: [{data: [120,// 使用对象的形式&#xff0c; value代表当前值, itemStyle设置样式{value: 200,itemStyle: {color: #a90000}},150,80,70,110,130],type: bar}]设置单个柱子颜色&#xff1a; 柱形图单个柱子颜色: https://e…

c 语言 三元搜索 - 迭代与递归(Ternary Search)

计算机系统使用不同的方法来查找特定数据。有多种搜索算法&#xff0c;每种算法更适合特定情况。例如&#xff0c;二分搜索将信息分为两部分&#xff0c;而三元搜索则执行相同的操作&#xff0c;但分为三个相等的部分。值得注意的是&#xff0c;三元搜索仅对排序数据有效。在本…

video.js自定义预览组件-旋转、下载、画中画、放大缩小功能

使用video.js实现视频播放功能 效果图 - 这里以弹窗展示为例 注意&#xff1a;记得安装video.js插件&#xff01;&#xff01;&#xff01; 代码 父级使用&#xff1a; videoPreview.vue文件 <!-- 视频预览组件 --> <template><el-dialogid"previewFi…

【战略前沿】丹麦正在建造一台英伟达人工智能超级计算机

【原文】Denmark is building an Nvidia AI supercomputer 【作者】Linnea Ahlgren 它将于今年上线&#xff0c;并以新的量子计算软件为特色。 过去一年最大的赢家——芯片制造商英伟达&#xff08;Nvidia&#xff09;和制药制造商诺和诺德&#xff08;Novo Nordisk&#xff0…

【C语言】linux内核pci_alloc_irq_vectors

一、注释 代码中包含了几个关于PCI&#xff08;外围组件互联&#xff09;设备中断请求&#xff08;IRQ&#xff09;向量分配的函数&#xff0c;以及内联函数声明&#xff0c;下面是对这些函数的中文注释&#xff1a; static inline int pci_alloc_irq_vectors_affinity(struc…

曲线生成 | 图解Reeds-Shepp曲线生成原理(附ROS C++/Python/Matlab仿真)

目录 0 专栏介绍1 什么是Reeds-Shepp曲线&#xff1f;2 Reeds-Shepp曲线的运动模式3 Reeds-Shepp曲线算法原理3.1 坐标变换3.2 时间翻转(time-flip)3.3 反射变换(reflect)3.4 后向变换(backwards) 4 仿真实现4.1 ROS C实现4.2 Python实现4.3 Matlab实现 0 专栏介绍 &#x1f5…

【竞技宝】DOTA2:lou神带队速推 AR力克Zero晋级决赛

北京时间2024年3月24日,DOTA2梦幻联赛S23中国区预选赛正在进行之中,昨日进行了本次预选赛的胜者组决赛Zero对阵AR。本场比赛双方前两局战至1-1平,决胜局AR选出一套前期进攻性十足的阵容早早取得优势,最终AR鏖战三局力克Zero晋级决赛。以下是本场比赛的详细战报。 第一局: Zero…

第九篇【传奇开心果系列】Python自动化办公库技术点案例示例:深度解读Python处理PDF文件

传奇开心果博文系列 系列博文目录Python自动化办公库技术点案例示例系列 博文目录前言一、重要作用介绍二、Python库处理PDF文件基础操作和高级操作介绍&#xff08;一&#xff09;基础操作介绍&#xff08;二&#xff09;高级操作介绍 三、Python库处理PDF文件基础操作示例代码…

ESP8266制作WIFI音箱

首先是设备截图 使用的技术: 1、Esp8266播放网络音乐 2、自己搭建一个音乐播放服务,这样播放的内容就由自己而定了,将你的服务对接支付宝,就可以实现支付宝收款语音播报了 代码 esp8266代码 #include <Arduino.h>#ifdef ESP32#include <WiFi.h> #else#inc…

(AtCoder Beginner Contest 325) ---- D - Printing Machine -- 题解

目录 D - Printing Machine&#xff1a; 题目大意&#xff1a; 思路解析&#xff1a; 代码实现&#xff1a; D - Printing Machine&#xff1a; 题目大意&#xff1a; 思路解析&#xff1a; 打印一次后&#xff0c;需要充电一微秒后才能再次打印就可以看作每微妙只能打印一…

2024年3月GESP认证Python编程一级真题试卷

2024年3月GESP认证Python编程一级真题试卷 题目总数&#xff1a;27 总分数&#xff1a;100 选择题 第 1 题 单选题 小杨的父母最近刚刚给他买了一块华为手表&#xff0c;他说手表上跑的是鸿蒙&#xff0c;这个鸿蒙是&#xff1f;&#xff08; &#xff09;。 A.小程…

03. 【Android教程】Genymotion 的安装与使用

在上一章中我们在 Eclipse 当中创建了 AVD&#xff0c;由于性能差只适合测试小型 App。这里将推荐一款性能更佳的 Android 模拟器—— Genymotion。首先我们看看 Genymotion 好在哪里。 1. Genymotion 优势 Genymotion 相对于内置模拟器有如下优势&#xff1a; 运行速度快、画…

[数据结构]二叉树的建立与遍历(递归)

一、二叉树的遍历与建立 首先我们拥有如下二叉树: 要了解二叉树遍历,我们得先了解二叉树的三种遍历方式:前序遍历,中序遍历,后序遍历 1.前序遍历 前序遍历:根,左子树,右子树 遍历的结果就是:1 2 4 8 N N 9 N N 5 10 N N 11 N N 3 6 N N 7 N N 2.中序遍历 中序遍历:左子树…

爆增49.07%!2024国自然面上项目申报,再创新高

毕业推荐 SSCI&#xff08;ABS一星&#xff09; • 社科类&#xff0c;3.0-4.0&#xff0c;JCR2区&#xff0c;中科院3区 • 13天录用&#xff0c;28天见刊&#xff0c;13天检索 SCIE&#xff1a; • 计算机类&#xff0c;6.5-7.0&#xff0c;JCR1区&#xff0c;中科院2区…

大东方保险集团陈志远:洞察保险行业的重要性及未来三年发展前景

在当今社会,保险行业作为风险管理的重要工具,正日益凸显其不可或缺的地位。大东方保险集团陈志远近日在接受采访时,深入探讨了保险行业的重要性以及未来三年的发展前景。 一、保险行业的重要性 陈志远指出,保险行业在现代经济中扮演着举足轻重的角色。它不仅是社会稳定的“减震…