C++STL库中的list


文章目录

  • list的介绍及使用
  • list的常用接口
  • list的模拟实现
  • list与vector的对比

一、list的介绍及使用

  • 1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
  • 2. list的底层是双向带头循环链表结构,双向带头循环链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。
  • 3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。
  • 4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率更好。
  • 5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间
  • 开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这可能是一个重要的因素)

二、list的常用接口

1.list的构造函数

default (1)
list();explicit list (const allocator_type& alloc);

  构造一个没有元素的空容器。

fill (2)
explicit list (size_type n, const allocator_type& alloc = allocator_type());         

list (size_type n, const value_type& val, const allocator_type& alloc = allocator_type());

构造一个包含n个元素的容器。每个元素都是val。

range (3)
template <class InputIterator>  
list (InputIterator first, InputIterator last, const allocator_type& alloc = allocator_type());

构造一个包含与范围[first,last]一样多的元素的容器,每个元素都以相同的顺序从该范围中的相应元素构造而成。

copy (4)
list (const list& x);
list (const list& x, const allocator_type& alloc);

以相同的顺序构造一个包含x中每个元素的副本的容器。

move (5)
list (list&& x);list (list&& x, const allocator_type& alloc);

 右值引用构造

initializer list (6)
list (initializer_list<value_type> il, const allocator_type& alloc = allocator_type());

构造一个通过初始化列表的方式

#include <iostream>
#include <list>

int main()
{
    std::list<int> l1;                         // 构造空的l1
    std::list<int> l2(4, 100);                 // l2中放4个值为100的元素
    std::list<int> l3(l2.begin(), l2.end());  // 用l2的[begin(), end())左闭右开的区间构造l3
    std::list<int> l4(l3);                    // 用l3拷贝构造l4

    // 以数组为迭代器区间构造l5
    int array[] = { 16,2,77,29 };
    std::list<int> l5(array, array + sizeof(array) / sizeof(int));

    // 列表格式初始化C++11
    std::list<int> l6{ 1,2,3,4,5 };

    // 用迭代器方式打印l5中的元素
    std::list<int>::iterator it = l5.begin();
    while (it != l5.end())
    {
        std::cout << *it << " ";
        ++it;
    }
    
    std::cout << std::endl;

    // C++11范围for的方式遍历
    for (auto& e : l5)
        std::cout << e << " ";

    std::cout << std::endl;


	return 0;
}

2.list iterator的使用

函数声明                                                                 接口说明
begin + end           返回第一个元素的迭代器+返回最后一个元素下一个位置的迭代器 (即头
                                结点)
rbegin + rend          返回第一个元素的reverse_iterator,即end位置返回最后一个元素下一
                               个位置的reverse_iterator,即begin位置

【注意】
1. begin与end为正向迭代器,对迭代器执行++操作,迭代器向后移动
2. rbegin(end)与rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动

#include <iostream>
#include <list>

int main()
{
	std::list<int> lt;
	lt.push_back(1);
	lt.push_back(2);
	lt.push_back(3);

	for (auto it = lt.begin(); it != lt.end(); it++)
		std::cout << *it << " ";
	std::cout << std::endl;

	for (auto x : lt)
		std::cout << x << " ";
	std::cout << std::endl;
	return 0;
}

3.list相关容量操作

函数声明                                                                        接口说明
empty                                          检测list是否为空,是返回true,否则返回false
size                                                                  返回list中有效节点的个数

#include <iostream>
#include <list>

int main()
{
	std::list<int> lt;
	lt.push_back(1);
	lt.push_back(2);
	lt.push_back(3);

	std::cout << lt.size() << std::endl;
	std::cout << lt.empty() << std::endl;
	return 0;
}

4.list相关访问操作

函数声明                                                                                  接口说明
front                                                                  返回list的第一个节点中值的引用
back                                                                  返回list的最后一个节点中值的引用
#include <iostream>
#include <list>

int main()
{
	std::list<int> lt;
	lt.push_back(1);
	lt.push_back(2);
	lt.push_back(3);

	std::cout << lt.front() << std::endl;
	std::cout << lt.back() << std::endl;
	return 0;
}

5.list相关修改操作

函数声明                                                                                接口说明
push_front                                                  在list首元素前插入值为val的元素
pop_front                                                                  删除list中第一个元素
push_back                                                          在list尾部插入值为val的元素
pop_back                                                                  删除list中最后一个元素
insert                                                          在list position 位置中插入值为val的元素
erase                                                                          删除list position位置的元素
swap                                                                          交换两个list中的元素
clear                                                                                 清空list中的有效元素
#include <iostream>
#include <vector>
#include <list>

// list迭代器的使用
// 注意:遍历链表只能用迭代器和范围for
void PrintList(const std::list<int>& l)
{
    // 注意这里调用的是list的 begin() const,返回list的const_iterator对象
    for (std::list<int>::const_iterator it = l.begin(); it != l.end(); ++it)
    {
        std::cout << *it << " ";
        // *it = 10; 编译不通过
    }

    std::cout << std::endl;
}

// list插入和删除
// push_back/pop_back/push_front/pop_front
void TestList3()
{
    int array[] = { 1, 2, 3 };
    std::list<int> L(array, array + sizeof(array) / sizeof(array[0]));

    // 在list的尾部插入4,头部插入0
    L.push_back(4);
    L.push_front(0);
    PrintList(L);

    // 删除list尾部节点和头部节点
    L.pop_back();
    L.pop_front();
    PrintList(L);
}

// insert /erase 
void TestList4()
{
    int array1[] = { 1, 2, 3 };
    std::list<int> L(array1, array1 + sizeof(array1) / sizeof(array1[0]));

    // 获取链表中第二个节点
    auto pos = ++L.begin();
    std::cout << *pos << std::endl;

    // 在pos前插入值为4的元素
    L.insert(pos, 4);
    PrintList(L);

    // 在pos前插入5个值为5的元素
    L.insert(pos, 5, 5);
    PrintList(L);

    // 在pos前插入[v.begin(), v.end)区间中的元素
    std::vector<int> v{ 7, 8, 9 };
    L.insert(pos, v.begin(), v.end());
    PrintList(L);

    // 删除pos位置上的元素
    L.erase(pos);
    PrintList(L);

    // 删除list中[begin, end)区间中的元素,即删除list中的所有元素
    L.erase(L.begin(), L.end());
    PrintList(L);
}

// resize/swap/clear
void TestList5()
{
    // 用数组来构造list
    int array1[] = { 1, 2, 3 };
    std::list<int> l1(array1, array1 + sizeof(array1) / sizeof(array1[0]));
    PrintList(l1);

    // 交换l1和l2中的元素
    std::list<int> l2;
    l1.swap(l2);
    PrintList(l1);
    PrintList(l2);

    // 将l2中的元素清空
    l2.clear();
    std::cout << l2.size() << std::endl;
}

int main()
{
    TestList3();
    TestList4();
    TestList5();
	return 0;
}

6.list容器相关独特操作

 splice                                     将元素从一个链表转移到另一个链表(公共成员函数)



 remove                                  删除具有特定值的元素(公共成员函数)

remove_if                                 删除满足条件的元素(公共成员函数模板)

unique                                                  删除重复值(公共成员函数)

mergemerge                                   合并已排序的列表(公共成员功能)


sort                                                对容器中的元素排序(公共成员函数)

reverse                                     颠倒元素的顺序(公共成员函数)

三、list的模拟实现

1.list的节点结构

template<class T>
	struct list_node
	{
		T _data;//数据域
		list_node<T>* _prev;//前驱指针
		list_node<T>* _next;//后继指针

		list_node(const T& val=T())
			:_data(val)
			,_prev(nullptr)
			,_next(nullptr)
		{}
	};

2.list的常用接口模拟

template<class T>
	class list
	{
		typedef list_node<T> Node;
	public:
		typedef __list_iterator<T, T&, T*> iterator;
		typedef __list_iterator<T, const T&, const T*> const_iterator;

		const_iterator begin()const;

		const_iterator end()const;

		iterator begin();

		iterator end();

		list();
        template<class InputIterator>
        list(InputIterator first,InputIterator last);
        list(const list<T>& lt);
        list<T>& operator=(list<T> lt);
        ~list();
        
        size_t size();
        bool empty();

		void push_back(const T& val);

		void push_front(const T& val);

		iterator insert(iterator pos, const T& x);

		iterator erase(iterator pos);

		void pop_back();

		void pop_front();
        
        void clear();
	private:
		Node* _head;
	};

3.list的迭代器

1.迭代器相关结构组成

	// 像指针一样的对象
	template<class T, class Ref, class Ptr>
	struct __list_iterator
	{
		typedef list_node<T> Node;
		typedef __list_iterator<T, Ref, Ptr> iterator;

		typedef bidirectional_iterator_tag iterator_category;
		typedef T value_type;
		typedef Ptr pointer;
		typedef Ref reference;
		typedef ptrdiff_t difference_type;


		Node* _node;

		__list_iterator(Node* node)
			:_node(node)
		{}

		bool operator!=(const iterator& it) const;

		bool operator==(const iterator& it) const;

		Ref operator*();
 
		Ptr operator->();

		iterator& operator++();

		iterator operator++(int);
		
		iterator& operator--();

		iterator operator--(int);
	};

2.迭代器结构实现

template<class T,class Ref,class Ptr>
	struct __list_iterator
	{
		typedef list_node<T> Node;
		typedef __list_iterator<T, Ref, Ptr> iterator;

		typedef  std::bidirectional_iterator_tag iterator_category;
		typedef T value_type;
		typedef Ptr pointer;
		typedef Ref reference;
		typedef ptrdiff_t difference_type;

		Node* _node;

		__list_iterator(Node* node)
			:_node(node)
		{};

		bool operator!=(const iterator& it)const
		{
			return _node != it._node;
		}

		bool operator==(const iterator& it)const
		{
			return _node == it._node;
		}

		Ref operator*()
		{
			return _node->_data;
		}

		Ptr operator->()
		{
			return &(operator*());
		}

		iterator& operator++()
		{
			_node = _node->_next;
			return *this;
		}

		iterator operator++(int)
		{
			iterator tmp(*this);
			_node = _node->_next;
			return tmp;
		}

		iterator& operator--()
		{
			_node = _node->_prev;
			return *this;
		}

		iterator operator--(int)
		{
			iterator tmp(*this);
			_node = _node->_prev;
			return tmp;
		}
	};

4.list的成员函数

1.list的构造函数

// 默认构造函数
list()
{
    // 构造头节点,自己指向自己
    _head = new Node;
    _head->_prev = _head;
    _head->_next = _head;
}

// 用迭代器区间初始化[first,last)
template<class InputIterator>
list(InputIterator first, InputIterator last)
    :_head(new Node) 
{
	_head->_prev = _head;
	_head->_next = _head;
        

	while (first != last)
	{
		push_back(*first);
		first++;
	}
}

2.list的拷贝构造函数

//拷贝构造函数(深拷贝)
// lt2(lt1)
list(const list<T>& lt)
    :_head(new Node) 
{
    _head->_prev = _head;
    _head->_next = _head;
 
    for (const auto& e : lt)
    {
    	push_back(e);
    }
}

// 拷贝构造函数(深拷贝)
list(const list<T>& lt)
    :_head(new Node) 
{
    _head->_prev = _head;
    _head->_next = _head;

	list<T> tmp(lt.begin(), lt.end());
	std::swap(_head, tmp._head); 
}

3.list的赋值运算符重载函数

//深拷贝
list<T>& operator=(const list<T>& lt)
{
    if (this != &lt) 
    {

        clear();


        for (const auto& e : lt)
        {
            push_back(e);
        }
    }

    return *this; 
}


list<T>& operator=(list<T> lt) 
{
    std::swap(_head, lt._head);

    return *this; 
}

4.list的析构函数

~list()
{
	//方法一
    Node* cur = _head->_next;

    while (cur != _head) 
    {
        Node* next = cur->_next; 

        delete cur; 

        cur = next;
    }

    delete _head; 
    _head = nullptr;
	

    //方法二:复用 clear 函数的代码

    clear();
    delete _head;
    _head = nullptr;
}

5.list其他相关结构函数

		void clear()
		{
			iterator it = begin();
			while (it != end())
			{
				it = erase(it);
			}
		}

		void push_back(const T& x)
		{
			//Node* tail = _head->_prev;
			//Node* newnode = new Node(x);

			 _head          tail  newnode
			//tail->_next = newnode;
			//newnode->_prev = tail;
			//newnode->_next = _head;
			//_head->_prev = newnode;

			insert(end(), x);
		}

		void push_front(const T& x)
		{
			insert(begin(), x);
		}

		iterator insert(iterator pos, const T& x)
		{
			Node* cur = pos._node;
			Node* prev = cur->_prev;

			Node* newnode = new Node(x);

			// prev newnode cur
			prev->_next = newnode;
			newnode->_prev = prev;
			newnode->_next = cur;
			cur->_prev = newnode;

			return iterator(newnode);
		}

		void pop_back()
		{
			erase(--end());
		}

		void pop_front()
		{
			erase(begin());
		}

		iterator erase(iterator pos)
		{
			assert(pos != end());

			Node* cur = pos._node;
			Node* prev = cur->_prev;
			Node* next = cur->_next;

			prev->_next = next;
			next->_prev = prev;
			delete cur;

			return iterator(next);
		}

5.list的迭代器失效

迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响。
#include <iostream>
#include <list>

void testlistiterator1()
{
	int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
	std::list<int> l(array, array + sizeof(array) / sizeof(array[0]));
	auto it = l.begin();
	while (it != l.end())
	{
		// erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给其赋值
		it = l.erase(it);
		it++;
	}
}

int main()
{
	testlistiterator1();
	return 0;
}

四、listvector的对比

vector与list都是STL中非常重要的序列式容器,由于两个容器的底层结构不同,导致其特性以及应用场景不同,其主要不同如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/48595.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python爬虫实例之淘宝商品页面爬取(api接口)

可以使用Python中的requests和BeautifulSoup库来进行网页爬取和数据提取。以下是一个简单的示例&#xff1a; import requests from bs4 import BeautifulSoupdef get_product_data(url):# 发送GET请求&#xff0c;获取网页内容headers {User-Agent: Mozilla/5.0 (Windows NT…

深度学习算法的计算量

文章目录 一、FLOPs与FLOPS二、参数量parameters三、Latency与FPS四、结论 一、FLOPs与FLOPS 二、参数量parameters 三、Latency与FPS 四、结论

苹果开发“Apple GPT”AI科技迎来新格局

根据彭博社的马克・古尔曼&#xff08;Mark Gurman&#xff09;报道&#xff0c;苹果内部正在开发“Apple GPT”人工智能项目&#xff0c;足以媲美 OpenAI 的 ChatGPT &#xff0c;预计明年推出。就在彭博社消息发出之后&#xff0c;苹果股价上涨了2.3%&#xff0c;市值顶峰时增…

《论文阅读》具有特殊Token和轮级注意力的层级对话理解 ICLR 2023

《论文阅读》具有特殊Token和轮级注意力的层级对话理解 前言简介问题定义模型构建知识点Intra-turn ModelingInter-turn Modeling分类前言 你是否也对于理解论文存在困惑? 你是否也像我之前搜索论文解读,得到只是中文翻译的解读后感到失望? 小白如何从零读懂论文?和我一…

摄像头m2dock(MAIX-II DOCK)

官方文档地址 https://wiki.sipeed.com/soft/maixpy3/zh/index.html 一、软件准备 1 烧录镜像软件 2 镜像 当前最近版本镜像文件 3 SDFormatter 4 Maixpy IDE 二、SD卡准备 1 格式化SD卡&#xff08;用SDFormatter&#xff09; 2 烧录 3 弹出&#xff0c;插入开发板中 出现…

多租户的低代码平台,Saas开发平台:MateCloud

简介 MateCloud是一款基于Spring Cloud Alibaba的微服务架构。目前已经整合Spring Boot 2.7.0、 Spring Cloud 2021、Spring Cloud Alibaba 2021、Spring Security Oauth2、Feign、Dubbo、JetCache、RocketMQ等&#xff0c;支持多租户的低代码平台&#xff0c;Saas平台开发套件…

「乐天世界」NFT 作品集

进入「乐天世界」NFT 作品集的迷人世界&#xff0c;这里仿佛就是乐天世界探险主题公园里充满活力的礼品店。 准备好随着想象力的飞跃而沉浸其中吧&#xff0c;因为主题公园里的普通物品已经变得非凡。沉浸在游乐园美食的魔力中&#xff0c;如香脆的玉米热狗、令人垂涎的巧克力蛋…

MQ, RocketMQ, 安装

文章说明 本文主要说明RocketMQ的几种常见的安装方式。之前在工作中也用过RocketMQ&#xff0c;但是一直用的是测试环境上的&#xff0c;也没有自己动手安装过。这次专门抽了时间学习了一下。 文章目录 文章说明参考文献安装windows安装环境要求下载配置环境变量启动注意事项 …

接口自动化如何做?接口自动化测试- 正则用例参数化(实例)

目录&#xff1a;导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结&#xff08;尾部小惊喜&#xff09; 前言 我们在做接口自动…

SpringCloud学习路线(9)——服务异步通讯RabbitMQ

一、初见MQ &#xff08;一&#xff09;什么是MQ&#xff1f; MQ&#xff08;MessageQueue&#xff09;&#xff0c;意思是消息队列&#xff0c;也就是事件驱动架构中的Broker。 &#xff08;二&#xff09;同步调用 1、概念&#xff1a; 同步调用是指&#xff0c;某一服务…

现在入行软测=49年入国军?三句话,让面试官再掏2K

还有一个月就步入金九银十&#xff0c;很多软测人吐槽因为疫情&#xff0c;公司都在裁员&#xff0c;别说跳槽涨薪&#xff0c;能保住现在的工作就不错了。 但也有那么一批人&#xff0c;凭借自己口才与实力拿到年薪近50W的offer。面试是初见1小时就要相互了解优缺点的过程&am…

JS学习之ES6

一、ES简介 Nodejs 安装&#xff1a; Babel 安装&#xff1a; let命令&#xff1a; 区别&#xff1a;以循环为例。 注意下面这种用法&#xff1a; 对象解构赋值&#xff1a; 字符串扩展&#xff1a; 字符串模板&#xff1a; 字符串方法&#xff1a; 数组扩展&#xff1a; 扩展…

mybatis_分页

目的&#xff1a; 减少数据处理量&#xff0c;提高效率 普通sql&#xff1a; 语法&#xff1a;select * from user limit startIndex,pageSize; SELECT * from user limit 3; #[0,n] mybatis_sql: 接口&#xff1a; //分页查询List<User> getUserByLimit(Map<…

解决@Scope(“prototype“)不生效的问题

目录 Scope(“prototype“)不生效Scope(“prototype“)正确用法——解决Bean多例问题 1.问题&#xff0c;Spring管理的某个Bean需要使用多例2.问题升级3. Spring给出的解决问题的办法&#xff08;解决Bean链中某个Bean需要多例的问题&#xff09; Scope(“prototype“)不生效 …

【自动话化运维】Ansible常见模块的运用

目录 一、Ansible简介二、Ansible安装部署2.1环境准备 三、ansible 命令行模块3.1&#xff0e;command 模块3.2&#xff0e;shell 模块3.3&#xff0e;cron 模块3.4&#xff0e;user 模块3.5&#xff0e;group 模块3.6&#xff0e;copy 模块3.7&#xff0e;file 模块8&#xff…

MQ - 闲聊MQ一二事儿 (Kafka、RocketMQ 、Pulsar )

文章目录 MQ的发展史阶段一&#xff1a;追求解耦阶段二&#xff1a;追求吞吐量与一致性阶段三&#xff1a;追求平台化 MQ的通用架构主题topic、生产者producer、消费者consumer分区partition MQ 存储KafkaGood Design ---> 磁盘顺序写盘Poor Impact---> topic 数量不能过…

云计算需求激增带来的基础设施挑战及解决方案

云计算的指数级增长迅速改变了我们消费和存储数字信息的方式。随着企业和个人越来越依赖基于云的服务和数据存储&#xff0c;对支持这些服务的强大且可扩展的基础设施的需求已达到前所未有的水平。 云计算需求的快速增长 我们的日常生活越来越多地被新技术所渗透。流媒体服务、…

用HTML写一个简单的静态购物网站

实现代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>购物网站</title> &l…

Nginx动静分离、资源压缩、负载均衡、黑白名单、防盗链等实战

一、前言 Nginx是目前负载均衡技术中的主流方案&#xff0c;几乎绝大部分项目都会使用它&#xff0c;Nginx是一个轻量级的高性能HTTP反向代理服务器&#xff0c;同时它也是一个通用类型的代理服务器&#xff0c;支持绝大部分协议&#xff0c;如TCP、UDP、SMTP、HTTPS等。 二、…

设计利器,掌握CAD辅助命令的必备指南

CAD设计中的辅助命令是提高效率和确度的关键工具。掌握并正确运用CAD中的各种辅助命令对于设计师们来说至关重要。本文将为你详细介绍如何使用CAD中的辅助命令&#xff0c;从而帮助你在设计过程中更加高效地实现你的创意。、 大家有没有发现&#xff0c;当我们的直线命令移动到…