多线程(JavaEE初阶系列5)

目录

前言:

1.什么是定时器

2.标准库中的定时器及使用

3.实现定时器

结束语:


前言:

在上一节中小编给大家介绍了多线程中的两个设计模式,单例模式和阻塞式队列模式,在单例模式中又有两种实现方式一种是懒汉模式,一种是饿汉模式,在这两种模式中我们推荐大家使用的是懒汉模式,虽然饿汉模式是天然的线程安全的,但是与饿汉模式相比起来效率没有懒汉模式的高。在阻塞式队列中给大家重点提到了生产者和消费者模型,这个是我们以后会经常用到的一种模式,当时小编为了大家好理解给大家举了两个例子一个是包饺子,一个就是三峡大坝的削峰填谷,希望大家重点理解这两个例子。这节中小编将给大家讲解一下多线程中的定时器,讲解一下什么是定时器,定时器的使用以及手动实现一个定时器。

1.什么是定时器

定时器也是软件开发中的一个重要的组件,类似于一个“闹钟”,达到一个设定的时间之后,就执行某个指定好的代码。

比如:网络通信中,如果对方500ms内没有返回数据,则断开连接尝试重连,比如一个Map,希望里面的某个key在3s之后过期(自动删除),类似于这样的场景就需要用到定时器。

2.标准库中的定时器及使用

在标准库中提供了一个类:Timer类。

Timer timer = new Timer( );

Timer类的核心方法为schedule。

  • schedule包含了两个参数,第一个参数指定即将要执行的任务代码,第二个参数指定多长时间之后执行(单位为毫秒)。

timer.schedule( new TimerTack( ) {

        @Override

        public void run() {

                System.out.println("hello");

        }

} , 3000 );

下面我们就在idea中来给大家具体演示一下:

代码展示:

package Time;

import java.util.Timer;
import java.util.TimerTask;

public class ThreadDemo1 {
    public static void main(String[] args) {
        //创建一个定时器
        Timer timer = new Timer();
        //让hello4、hello3、hello2、hello1在线程启动之后分别在4s、3s、2s、1s之后执行。
        timer.schedule(new TimerTask() {
            @Override
            public void run() {
                System.out.println("hello4");
            }
        },4000);
        timer.schedule(new TimerTask() {
            @Override
            public void run() {
                System.out.println("hello3");
            }
        },3000);
        timer.schedule(new TimerTask() {
            @Override
            public void run() {
                System.out.println("hello2");
            }
        },2000);
        timer.schedule(new TimerTask() {
            @Override
            public void run() {
                System.out.println("hello1");
            }
        },1000);
        System.out.println("hello0");
    }
}

结果展示:

3.实现定时器

要想实现一个定时器我们就需要先来了解一下定时器的构成。

定时器的构成:

  • 是一个带优先级的阻塞队列。
  • 队列中的每一个元素是一个Task对象。
  • Task中带有一个时间属性,队首元素就是即将要执行的元素。
  • 同时有一个worker线程一直扫描队首元素,看队首元素是否需要执行。

这里给大家解释一下为啥要带优先级呢?

因为阻塞式队列中的任务都有各自执行时刻(delay),最先执行的任务一定是delay最小的,使用优先级的队列就可以高效的把这个delay最小的任务找出来了。所以这里的核心数据结构是“堆”!!!之前学习数据结构中的PriorityQueue就是一个带优先级的阻塞式队列。

注:具体的操作步骤请详细看代码内的注释!!!

代码展示:

package Time;

import java.util.PriorityQueue;
class MyTask implements Comparable<MyTask>{
    public Runnable runnable;
    //为了方便后续的判定,使用绝对的时间戳
    public long time;
    public MyTask(Runnable runnable, long delay) {
        this.runnable = runnable;
        //取当前时刻的时间戳 + delay,作为该任务实际执行的时间戳。
        this.time = System.currentTimeMillis() + delay;
    }

    //指定一下在后续的优先级队列中我们是要按照时间来进行比较大小
    @Override
    public int compareTo(MyTask o) {
        //这样的写法意味着每次取出的是时间最小的元素
        return (int) (this.time - o.time);
    }
}
//自己实现一个类似于Timer类的MyTimer
class MyTimer{
    //这个结构要求带有优先级的阻塞队列,核心数据结构就是“堆”。
    //PriorityQueue<> ———— <>里面的元素需要我们手动的封装一下,创建一个MyTask类,表示两方面的信息。1.执行的任务是啥。2.任务啥时候执行。
    private PriorityQueue<MyTask> queue = new PriorityQueue<>();

    //创建一个锁对象
    private Object locker = new Object();

    //此处的delay是一个形如3000这样的数字(指多长时间后执行该任务)
    public void schedule(Runnable runnable, long delay) {
        //根据参数,构造MyTask,插入队列即可。
        synchronized (locker) {
            synchronized (locker) {
                MyTask myTask = new MyTask(runnable, delay);
                queue.offer(myTask);
                locker.notify();
            }
        }
    }

    //在这里构造线程,负责执行具体的任务
    public MyTimer() {
        Thread t = new Thread(() -> {
            while (true) {
                try {
                    synchronized (locker) {
                        //阻塞队列,只有阻塞的入队列和阻塞的出队列,没有阻塞的查看队首元素。
                        while (queue.isEmpty()) {
                            locker.wait();
                        }
                        MyTask myTask = queue.peek();
                        long curTime = System.currentTimeMillis();
                        if (curTime >= myTask.time) {
                            //时间到了,可以执行任务了
                            queue.poll();
                            myTask.runnable.run();
                        } else {
                            //时间还没到
                            locker.wait(myTask.time - curTime);
                        }
                    }
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        });
        //启动线程
        t.start();
    }
}
public class ThreadDemo2 {
    public static void main(String[] args) {
        //创建一个定时器对象
        MyTimer myTimer = new MyTimer();
        //模仿之前的使用方式使用
        myTimer.schedule(new Runnable() {
            @Override
            public void run() {
                System.out.println("hello4");
            }
        }, 4000);
        myTimer.schedule(new Runnable() {
            @Override
            public void run() {
                System.out.println("hello3");
            }
        }, 3000);
        myTimer.schedule(new Runnable() {
            @Override
            public void run() {
                System.out.println("hello2");
            }
        }, 2000);
        myTimer.schedule(new Runnable() {
            @Override
            public void run() {
                System.out.println("hello1");
            }
        }, 1000);
        System.out.println("hello0");
    }
}

结果展示:

可以看到上述代码的执行结果与标准库中定时器的效果一样。

结束语:

这节中小编带着大家一起了解了Java标准库中定时器的使用方式,并给大家实现了一下定时器。希望这节对大家学习JavaEE有一定的帮助,想要学习的同学记得关注小编和小编一起学习吧!如果文章中有任何错误也欢迎各位大佬及时为小编指点迷津(在此小编先谢过各位大佬啦!)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/48464.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Neo4j图数据基本操作

Neo4j 文章目录 Neo4jCQL结点和关系增删改查匹配语句 根据标签匹配节点根据标签和属性匹配节点删除导入数据目前的问题菜谱解决的问题 命令行窗口 neo4j.bat console 导入rdf格式的文件 :GET /rdf/ping CALL n10s.graphconfig.init(); //初始化 call n10s.rdf.import.fetch(&q…

从Arweave开始:4EVERLAND存储签入挑战开始

嗨&#xff0c;4evers&#xff0c; 今天&#xff0c;我们热烈欢迎您参加 Galxe 上的 4EVERLAND “Arweave 入门”活动。这是一项长期的重头活动&#xff0c;所有参与的用户都有机会获得相应的奖励。 Arweave 是一种革命性的去中心化存储协议&#xff0c;为寻求安全可靠的有价…

ubuntu 开启 ssh 服务 设置root远程登录

设置root用户密码 sudo passwd root安装ssh服务和vim编辑器 sudo apt -y install openssh-server vim开启ssh服务 sudo vim /etc/ssh/ssh_config去掉 配置文件中 Port 22 的注释后保存退出 设置root用户远程登录 sudo vim /etc/ssh/sshd_config将 PermitRootLogin prohibit-pas…

html学习1

1、<!DOCTYPE html>用来告知 Web 浏览器页面使用了哪种 HTML 版本。 2、对于中文网页需要使用 <meta charset"utf-8"> 声明编码&#xff0c;否则会出现乱码。 3、html的结构图&#xff0c;<body> </body>之间的部分可以显示。 4、HTML元素…

[语义分割] DeepLab v2(膨胀卷积、空洞卷积、多尺度信息融合、MSc、ASPP、空洞空间金字塔池化、Step学习率策略、Poly学习率策略)

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs 论文地址&#xff1a;DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs源码地址&…

C# IO 相关功能整合

目录 删除文件和删除文件夹 拷贝文件到另一个目录 保存Json文件和读取Json文件 写入和读取TXT文件 打开一个弹框&#xff0c;选择 文件/文件夹&#xff0c;并获取路径 获取项目的Debug目录路径 获取一个目录下的所有文件集合 获取文件全路径、目录、扩展名、文件名称 …

8款常用系统镜像烧录软件

系统烧录软件是一种用于将操作系统或其他软件程序安装到嵌入式系统、嵌入式设备或存储设备中的工具。它通常用于将预先编译好的二进制文件或源代码烧录到硬件设备的非易失性存储器中&#xff0c;例如闪存芯片、EEPROM、EPROM或其他存储介质。系统烧录软件提供了一个便捷的方式&…

matplotlib

目录 plot bar pie plot plot可以绘制点图和线图 ?plt.plot #使用?查看plot详细信息 x[1,2,3,4,5] y[16,17,18,19,20] plt.plot(x,y) import numpy as np xnp.arange(0,10) yx*x plt.plot(x,y) xnp.arange(5,15,0.1) ynp.sin(x) plt.plot(x,y,ro) #red circle markers p…

vs2013 32位 编译的 dll,重新用vs2022 64位编译,所遇问题记录

目录 一、vs2013 32 DLL 转 VS2022 64 DLL 所遇问题 1、 LNK2038: 检测到“_MSC_VER”的不匹配项: 值“1800”不匹配值“1900” 2、原先VS2013 现在 VS2022 导致的vsnprintf 重定义问题 3、 无法解析的外部符号 __vsnwprintf_s 4、无法解析的外部符号__imp__CertFreeC…

在线平面设计工具盘点,提升效率首选

在移动应用程序或网页UI设计项目中&#xff0c;在线平面图工具是必不可少的。市场上的在线平面图工具绘制软件丰富多样&#xff0c;层出不穷。作为一名UI设计师&#xff0c;有必要了解哪些在线平面图工具既简单又专业。本文将分享6种在线平面图工具&#xff0c;每种在线平面图工…

199. 二叉树的右视图

给定一个二叉树的 根节点 root&#xff0c;想象自己站在它的右侧&#xff0c;按照从顶部到底部的顺序&#xff0c;返回从右侧所能看到的节点值。 示例 1: 输入: [1,2,3,null,5,null,4] 输出: [1,3,4] 示例 2: 输入: [1,null,3] 输出: [1,3] 示例 3: 输入: [] 输出: [] 提示…

力扣算法数学类—剑指 Offer 62. 圆圈中最后剩下的数字

目录 剑指 Offer 62. 圆圈中最后剩下的数字 题目背景&#xff1a; 题解&#xff1a; 代码&#xff1a; 结果&#xff1a; 剑指 Offer 62. 圆圈中最后剩下的数字 题目背景&#xff1a; 这是著名的约瑟夫环问题 这个问题是以弗拉维奥约瑟夫命名的&#xff0c;他是1世纪的一名…

【2023最新教程】6个步骤从0到1开发自动化测试框架(0基础也能看懂)

一、序言 随着项目版本的快速迭代、APP测试有以下几个特点&#xff1a; 首先&#xff0c;功能点多且细&#xff0c;测试工作量大&#xff0c;容易遗漏&#xff1b;其次&#xff0c;代码模块常改动&#xff0c;回归测试很频繁&#xff0c;测试重复低效&#xff1b;最后&#x…

机器学习——样本不均衡学习

1、样本不均衡定义 一般在分类机器学习中&#xff0c;每种类别的样本是均衡的&#xff0c;也就是不同目标值的样本总量是接近的&#xff0c;但是在很多场景下的样本没有办法做到理想情况&#xff0c;甚至部分情况本身就是不均衡情况&#xff1a; &#xff08;1&#xff09;很多…

SSL 证书过期巡检脚本

哈喽大家好&#xff0c;我是咸鱼 我们知道 SSL 证书是会过期的&#xff0c;一旦过期之后需要重新申请。如果没有及时更换证书的话&#xff0c;就有可能导致网站出问题&#xff0c;给公司业务带来一定的影响 所以说我们要每隔一定时间去检查网站上的 SSL 证书是否过期 如果公…

StackOverFlow刚刚宣布推出自己的AI产品!

StackOverFlow刚刚宣布要推出自己的AI产品&#xff01; OverflowAI是StackOverFlow即将推出自己AI产品的名字&#xff0c;据称也是以VSCode插件的形式&#xff0c;计划在8月发布。我们来看看都有些什么功能&#xff0c;通过目前的信息看&#xff0c;OverflowAI的主要功能就是&…

中断控制器的驱动解析

这里主要分析 linux kernel 中 GIC v3 中断控制器的代码(drivers/irqchip/irq-gic-v3.c)。 设备树 先来看下一个中断控制器的设备树信息&#xff1a; gic: interrupt-controller51a00000 {compatible "arm,gic-v3";reg <0x0 0x51a00000 0 0x10000>, /* GI…

机器学习笔记之优化算法(二)线搜索方法(方向角度)

机器学习笔记之优化算法——线搜索方法[方向角度] 引言回顾&#xff1a;线搜索方法从方向角度观察线搜索方法场景构建假设1&#xff1a;目标函数结果的单调性假设2&#xff1a;屏蔽步长 α k \alpha_k αk​对线搜索方法过程的影响假设3&#xff1a;限定向量 P k \mathcal P_k …

Transformer模型简单介绍

Transformer是一个深度学习模型。主要功能通俗的来说就是翻译。输入&#xff0c;处理&#xff0c;输出。 https://zhuanlan.zhihu.com/p/338817680 大牛写的很完整 目录 总框架Encoder输入部分注意力机制前馈神经网络 Decoder 总框架 Encoders: 编码器Decoders: 解码器 Encoder…

【node.js】01-fs读写文件内容

目录 一、fs.readFile() 读取文件内容 二、fs.writeFile() 向指定的文件中写入内容 案例&#xff1a;整理txt 需求&#xff1a; 代码&#xff1a; 一、fs.readFile() 读取文件内容 代码&#xff1a; //导入fs模块&#xff0c;从来操作文件 const fs require(fs)// 2.调…