(三维重建学习)已有位姿放入colmap和3D Gaussian Splatting训练

这里写目录标题

  • 一、colmap解算数据放入高斯
    • 1. 将稀疏重建的文件放入高斯
    • 2. 将稠密重建的文件放入高斯
  • 二、vkitti数据放入高斯

一、colmap解算数据放入高斯

运行Colmap.bat文件之后,进行稀疏重建和稠密重建之后可以得到如下文件结构。
在这里插入图片描述

1. 将稀疏重建的文件放入高斯

按照以下文件结构将colmap中的数据放入高斯中,就可以执行 python train.py -s data/data_blender_60 -m data/data_blender_60/output
在这里插入图片描述

2. 将稠密重建的文件放入高斯

按照以下文件结构将colmap中的数据放入高斯中,
在这里插入图片描述
此时若直接运行train文件会有如下报错:
在这里插入图片描述
意思是没有获取到cameras,点开sparse/0中的cameras文件,发现全是null,此时,**先删除sparse/0中的cameras.bin和images.bin,再将distorted/sparse/0中的cameras.bin和images.bin文件复制到sparse/0中。**实在不行也可以在colmap中重新导出一下模型。

就可以执行 python train.py -s data/data_blender_60 -m data/data_blender_60/output

二、vkitti数据放入高斯

vkitti数据数据格式如下:
在这里插入图片描述
colmap数据数据格式如下(外参数据一定要空一行否则后续不会执行):
在这里插入图片描述
最后我的colmap中目录结构如下:
在这里插入图片描述
先自行创建以下几个文件夹:执行command.bat

@echo off
if not exist created\sparse\model (
    mkdir created\sparse\model
    echo Created directory: created\sparse\model
)
if not exist triangulated\sparse\model (
    mkdir triangulated\sparse\model
    echo Created directory: triangulated\sparse\model
)
if not exist mapper\sparse\model (
    mkdir mapper\sparse\model
    echo Created directory: mapper\sparse\model
)

接下来开始操作:

写了一个程序进行格式转换:vkitti_to_colmap_cameras.py

import numpy as np
from scipy.spatial.transform import Rotation

index = 339 #要转换的图片张数


def cameras(input_path, output_path):
    # 定义一个字典用于存储提取的数据
    data_dict = {'frame': [], 'cameraID': [], 'PARAMS': []}

    # 打开文件并读取内容
    with open(input_path, 'r') as file:
        lines = file.readlines()[1:]
        # # 删除 camera=1的行
        # lines = [line for index, line in enumerate(lines) if index % 2 == 0]

    # 遍历每一行数据
    for line in lines:
        # 分割每一行数据
        elements = line.split()

        # 提取frame和cameraID
        frame = int(elements[0])
        cameraID = int(elements[1])

        if cameraID == 1:
            continue

        # 提取PARAMS
        PARAMS = elements[2:6]

        # 将提取的数据存入字典
        data_dict['frame'].append(frame)
        data_dict['cameraID'].append(frame + 1)
        data_dict['PARAMS'].append(PARAMS)

    width = 1242
    height = 375
    # 将处理后的内容写回文件
    # 打开文件以写入数据
    with open(output_path, 'w') as output_file:
        # 写入文件头部信息
        output_file.write(
            "# Camera list with one line of data per camera:\n# CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[fx,fy,cx,cy]\n# Number of cameras: 1\n")

        # 遍历每个数据点
        for i in range(len(data_dict['frame'])):
            # 获取相应的数据
            if data_dict['frame'][i] > index - 1:
                break
            cameraID = data_dict['cameraID'][i]
            PARAMS = data_dict['PARAMS'][i]

            fx, fy, cx, cy = PARAMS

            # 写入数据到文件
            output_file.write(
                f"{cameraID} PINHOLE {width} {height} {fx} {fy} {cx} {cy}\n")


def images(input_path, output_path):
    # 定义一个字典用于存储提取的数据
    data_dict = {'frame': [], 'cameraID': [], 'quaternions': []}

    # 打开文件并读取内容
    with open(input_path, 'r') as file:
        lines = file.readlines()[1:]

    # 遍历每一行数据
    for line in lines:
        # 分割每一行数据
        elements = line.split()

        # 提取frame和cameraID
        frame = int(elements[0])
        cameraID = int(elements[1])

        if cameraID == 1:
            continue

        # 提取旋转矩阵部分
        rotation_matrix = np.array([[float(elements[i]) for i in range(2, 11, 4)],
                                    [float(elements[i]) for i in range(3, 12, 4)],
                                    [float(elements[i]) for i in range(4, 13, 4)]])

        # 将旋转矩阵转换为四元数
        rotation = Rotation.from_matrix(rotation_matrix)
        quaternion = rotation.as_quat()

        # 将提取的数据存入字典
        data_dict['frame'].append(frame)
        data_dict['cameraID'].append(frame + 1)
        data_dict['quaternions'].append(quaternion)

    # 打开文件以写入数据
    with open(output_path, 'w') as output_file:
        # 写入文件头部信息
        output_file.write(
            "# Image list with two lines of data per image:\n# IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME\n# POINTS2D[] as (X, Y, POINT3D_ID)\n# Number of images: 339, mean observations per image: 1\n")

        # 遍历每个数据点
        for i in range(len(data_dict['frame'])):
            # 获取相应的数据
            if data_dict['frame'][i] > index - 1:
                break

            frame = data_dict['frame'][i]

            cameraID = data_dict['cameraID'][i]
            quaternion = data_dict['quaternions'][i]

            # 将四元数和平移向量分开
            qw, qx, qy, qz = quaternion
            tx, ty, tz = [float(elem) for elem in lines[i].split()[11:14]]

            # 写入数据到文件
            output_file.write(
                f"{frame + 1} {qw} {qx} {qy} {qz} {tx} {ty} {tz} {cameraID} rgb_{frame:05d}.jpg\n\n")


if __name__ == '__main__':
    input_path = "./intrinsic.txt"
    output_path = "./cameras.txt"
    cameras(input_path, output_path)
    input_path = "./extrinsic.txt"
    output_path = "./images.txt"
    images(input_path, output_path)

我的同学写了一个创建数据库的代码 ,这将cameras.txt和images.txt文件中的数据都放入database.db中:create_colmap_database.py

# Copyright (c) 2023, ETH Zurich and UNC Chapel Hill.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
#     * Redistributions of source code must retain the above copyright
#       notice, this list of conditions and the following disclaimer.
#
#     * Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#
#     * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
#       its contributors may be used to endorse or promote products derived
#       from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.


# This script is based on an original implementation by True Price.

import sys
import sqlite3
import numpy as np

IS_PYTHON3 = sys.version_info[0] >= 3

MAX_IMAGE_ID = 2 ** 31 - 1

CREATE_CAMERAS_TABLE = """CREATE TABLE IF NOT EXISTS cameras (
    camera_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
    model INTEGER NOT NULL,
    width INTEGER NOT NULL,
    height INTEGER NOT NULL,
    params BLOB,
    prior_focal_length INTEGER NOT NULL)"""

CREATE_DESCRIPTORS_TABLE = """CREATE TABLE IF NOT EXISTS descriptors (
    image_id INTEGER PRIMARY KEY NOT NULL,
    rows INTEGER NOT NULL,
    cols INTEGER NOT NULL,
    data BLOB,
    FOREIGN KEY(image_id) REFERENCES images(image_id) ON DELETE CASCADE)"""

CREATE_IMAGES_TABLE = """CREATE TABLE IF NOT EXISTS images (
    image_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
    name TEXT NOT NULL UNIQUE,
    camera_id INTEGER NOT NULL,
    prior_qw REAL,
    prior_qx REAL,
    prior_qy REAL,
    prior_qz REAL,
    prior_tx REAL,
    prior_ty REAL,
    prior_tz REAL,
    CONSTRAINT image_id_check CHECK(image_id >= 0 and image_id < {}),
    FOREIGN KEY(camera_id) REFERENCES cameras(camera_id))
""".format(
    MAX_IMAGE_ID
)

CREATE_TWO_VIEW_GEOMETRIES_TABLE = """
CREATE TABLE IF NOT EXISTS two_view_geometries (
    pair_id INTEGER PRIMARY KEY NOT NULL,
    rows INTEGER NOT NULL,
    cols INTEGER NOT NULL,
    data BLOB,
    config INTEGER NOT NULL,
    F BLOB,
    E BLOB,
    H BLOB,
    qvec BLOB,
    tvec BLOB)
"""

CREATE_KEYPOINTS_TABLE = """CREATE TABLE IF NOT EXISTS keypoints (
    image_id INTEGER PRIMARY KEY NOT NULL,
    rows INTEGER NOT NULL,
    cols INTEGER NOT NULL,
    data BLOB,
    FOREIGN KEY(image_id) REFERENCES images(image_id) ON DELETE CASCADE)
"""

CREATE_MATCHES_TABLE = """CREATE TABLE IF NOT EXISTS matches (
    pair_id INTEGER PRIMARY KEY NOT NULL,
    rows INTEGER NOT NULL,
    cols INTEGER NOT NULL,
    data BLOB)"""

CREATE_NAME_INDEX = (
    "CREATE UNIQUE INDEX IF NOT EXISTS index_name ON images(name)"
)

CREATE_ALL = "; ".join(
    [
        CREATE_CAMERAS_TABLE,
        CREATE_IMAGES_TABLE,
        CREATE_KEYPOINTS_TABLE,
        CREATE_DESCRIPTORS_TABLE,
        CREATE_MATCHES_TABLE,
        CREATE_TWO_VIEW_GEOMETRIES_TABLE,
        CREATE_NAME_INDEX,
    ]
)


def image_ids_to_pair_id(image_id1, image_id2):
    if image_id1 > image_id2:
        image_id1, image_id2 = image_id2, image_id1
    return image_id1 * MAX_IMAGE_ID + image_id2


def pair_id_to_image_ids(pair_id):
    image_id2 = pair_id % MAX_IMAGE_ID
    image_id1 = (pair_id - image_id2) / MAX_IMAGE_ID
    return image_id1, image_id2


def array_to_blob(array):
    if IS_PYTHON3:
        return array.tobytes()
    else:
        return np.getbuffer(array)


def blob_to_array(blob, dtype, shape=(-1,)):
    if IS_PYTHON3:
        return np.fromstring(blob, dtype=dtype).reshape(*shape)
    else:
        return np.frombuffer(blob, dtype=dtype).reshape(*shape)


class COLMAPDatabase(sqlite3.Connection):
    @staticmethod
    def connect(database_path):
        return sqlite3.connect(database_path, factory=COLMAPDatabase)

    def __init__(self, *args, **kwargs):
        super(COLMAPDatabase, self).__init__(*args, **kwargs)

        self.create_tables = lambda: self.executescript(CREATE_ALL)
        self.create_cameras_table = lambda: self.executescript(
            CREATE_CAMERAS_TABLE
        )
        self.create_descriptors_table = lambda: self.executescript(
            CREATE_DESCRIPTORS_TABLE
        )
        self.create_images_table = lambda: self.executescript(
            CREATE_IMAGES_TABLE
        )
        self.create_two_view_geometries_table = lambda: self.executescript(
            CREATE_TWO_VIEW_GEOMETRIES_TABLE
        )
        self.create_keypoints_table = lambda: self.executescript(
            CREATE_KEYPOINTS_TABLE
        )
        self.create_matches_table = lambda: self.executescript(
            CREATE_MATCHES_TABLE
        )
        self.create_name_index = lambda: self.executescript(CREATE_NAME_INDEX)

    def add_camera(
            self,
            model,
            width,
            height,
            params,
            prior_focal_length=False,
            camera_id=None,
    ):
        params = np.asarray(params, np.float64)
        cursor = self.execute(
            "INSERT INTO cameras VALUES (?, ?, ?, ?, ?, ?)",
            (
                camera_id,
                model,
                width,
                height,
                array_to_blob(params),
                prior_focal_length,
            ),
        )
        return cursor.lastrowid

    def add_image(
            self,
            name,
            camera_id,
            prior_q=np.full(4, np.NaN),
            prior_t=np.full(3, np.NaN),
            image_id=None,
    ):
        cursor = self.execute(
            "INSERT INTO images VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)",
            (
                image_id,
                name,
                camera_id,
                prior_q[0],
                prior_q[1],
                prior_q[2],
                prior_q[3],
                prior_t[0],
                prior_t[1],
                prior_t[2],
            ),
        )
        return cursor.lastrowid

    def add_keypoints(self, image_id, keypoints):
        assert len(keypoints.shape) == 2
        assert keypoints.shape[1] in [2, 4, 6]

        keypoints = np.asarray(keypoints, np.float32)
        self.execute(
            "INSERT INTO keypoints VALUES (?, ?, ?, ?)",
            (image_id,) + keypoints.shape + (array_to_blob(keypoints),),
        )

    def add_descriptors(self, image_id, descriptors):
        descriptors = np.ascontiguousarray(descriptors, np.uint8)
        self.execute(
            "INSERT INTO descriptors VALUES (?, ?, ?, ?)",
            (image_id,) + descriptors.shape + (array_to_blob(descriptors),),
        )

    def add_matches(self, image_id1, image_id2, matches):
        assert len(matches.shape) == 2
        assert matches.shape[1] == 2

        if image_id1 > image_id2:
            matches = matches[:, ::-1]

        pair_id = image_ids_to_pair_id(image_id1, image_id2)
        matches = np.asarray(matches, np.uint32)
        self.execute(
            "INSERT INTO matches VALUES (?, ?, ?, ?)",
            (pair_id,) + matches.shape + (array_to_blob(matches),),
        )

    def add_two_view_geometry(
            self,
            image_id1,
            image_id2,
            matches,
            F=np.eye(3),
            E=np.eye(3),
            H=np.eye(3),
            qvec=np.array([1.0, 0.0, 0.0, 0.0]),
            tvec=np.zeros(3),
            config=2,
    ):
        assert len(matches.shape) == 2
        assert matches.shape[1] == 2

        if image_id1 > image_id2:
            matches = matches[:, ::-1]

        pair_id = image_ids_to_pair_id(image_id1, image_id2)
        matches = np.asarray(matches, np.uint32)
        F = np.asarray(F, dtype=np.float64)
        E = np.asarray(E, dtype=np.float64)
        H = np.asarray(H, dtype=np.float64)
        qvec = np.asarray(qvec, dtype=np.float64)
        tvec = np.asarray(tvec, dtype=np.float64)
        self.execute(
            "INSERT INTO two_view_geometries VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)",
            (pair_id,)
            + matches.shape
            + (
                array_to_blob(matches),
                config,
                array_to_blob(F),
                array_to_blob(E),
                array_to_blob(H),
                array_to_blob(qvec),
                array_to_blob(tvec),
            ),
        )


def example_usage():
    import os
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("--database_path", default="database.db")
    args = parser.parse_args()

    if os.path.exists(args.database_path):
        print("ERROR: database path already exists -- will not modify it.")
        return

    # Open the database.

    db = COLMAPDatabase.connect(args.database_path)

    # For convenience, try creating all the tables upfront.

    db.create_tables()

    # Create dummy cameras.

    model1, width1, height1, params1 = (
        0,
        1024,
        768,
        np.array((1024.0, 512.0, 384.0)),
    )
    model2, width2, height2, params2 = (
        2,
        1024,
        768,
        np.array((1024.0, 512.0, 384.0, 0.1)),
    )

    camera_id1 = db.add_camera(model1, width1, height1, params1)
    camera_id2 = db.add_camera(model2, width2, height2, params2)

    # Create dummy images.

    image_id1 = db.add_image("image1.png", camera_id1)
    image_id2 = db.add_image("image2.png", camera_id1)
    image_id3 = db.add_image("image3.png", camera_id2)
    image_id4 = db.add_image("image4.png", camera_id2)

    # Create dummy keypoints.
    #
    # Note that COLMAP supports:
    #      - 2D keypoints: (x, y)
    #      - 4D keypoints: (x, y, theta, scale)
    #      - 6D affine keypoints: (x, y, a_11, a_12, a_21, a_22)

    num_keypoints = 1000
    keypoints1 = np.random.rand(num_keypoints, 2) * (width1, height1)
    keypoints2 = np.random.rand(num_keypoints, 2) * (width1, height1)
    keypoints3 = np.random.rand(num_keypoints, 2) * (width2, height2)
    keypoints4 = np.random.rand(num_keypoints, 2) * (width2, height2)

    db.add_keypoints(image_id1, keypoints1)
    db.add_keypoints(image_id2, keypoints2)
    db.add_keypoints(image_id3, keypoints3)
    db.add_keypoints(image_id4, keypoints4)

    # Create dummy matches.

    M = 50
    matches12 = np.random.randint(num_keypoints, size=(M, 2))
    matches23 = np.random.randint(num_keypoints, size=(M, 2))
    matches34 = np.random.randint(num_keypoints, size=(M, 2))

    db.add_matches(image_id1, image_id2, matches12)
    db.add_matches(image_id2, image_id3, matches23)
    db.add_matches(image_id3, image_id4, matches34)

    # Commit the data to the file.

    db.commit()

    # Read and check cameras.

    rows = db.execute("SELECT * FROM cameras")

    camera_id, model, width, height, params, prior = next(rows)
    params = blob_to_array(params, np.float64)
    assert camera_id == camera_id1
    assert model == model1 and width == width1 and height == height1
    assert np.allclose(params, params1)

    camera_id, model, width, height, params, prior = next(rows)
    params = blob_to_array(params, np.float64)
    assert camera_id == camera_id2
    assert model == model2 and width == width2 and height == height2
    assert np.allclose(params, params2)

    # Read and check keypoints.

    keypoints = dict(
        (image_id, blob_to_array(data, np.float32, (-1, 2)))
        for image_id, data in db.execute("SELECT image_id, data FROM keypoints")
    )

    assert np.allclose(keypoints[image_id1], keypoints1)
    assert np.allclose(keypoints[image_id2], keypoints2)
    assert np.allclose(keypoints[image_id3], keypoints3)
    assert np.allclose(keypoints[image_id4], keypoints4)

    # Read and check matches.

    pair_ids = [
        image_ids_to_pair_id(*pair)
        for pair in (
            (image_id1, image_id2),
            (image_id2, image_id3),
            (image_id3, image_id4),
        )
    ]

    matches = dict(
        (pair_id_to_image_ids(pair_id), blob_to_array(data, np.uint32, (-1, 2)))
        for pair_id, data in db.execute("SELECT pair_id, data FROM matches")
    )

    assert np.all(matches[(image_id1, image_id2)] == matches12)
    assert np.all(matches[(image_id2, image_id3)] == matches23)
    assert np.all(matches[(image_id3, image_id4)] == matches34)

    # Clean up.

    db.close()

    if os.path.exists(args.database_path):
        os.remove(args.database_path)


def create_database():
    import os
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("--database_path", default="database.db")
    args = parser.parse_args()

    # if os.path.exists(args.database_path):
    #     print("ERROR: database path already exists -- will not modify it.")
    #     return
    if os.path.exists(args.database_path):
        os.remove(args.database_path)

    # if not os.path.exists("distorted"):
    #     os.mkdir("distorted")

    # Open the database.

    db = COLMAPDatabase.connect(args.database_path)

    # For convenience, try creating all the tables upfront.

    db.create_tables()

    # Create dummy cameras.
    camModelDict = {'SIMPLE_PINHOLE': 0,
                    'PINHOLE': 1,
                    'SIMPLE_RADIAL': 2,
                    'RADIAL': 3,
                    'OPENCV': 4,
                    'FULL_OPENCV': 5,
                    'SIMPLE_RADIAL_FISHEYE': 6,
                    'RADIAL_FISHEYE': 7,
                    'OPENCV_FISHEYE': 8,
                    'FOV': 9,
                    'THIN_PRISM_FISHEYE': 10}

    with open("created/sparse/model/cameras.txt", "r") as cameras_file:
        cameras_instinct = cameras_file.read().replace("\n", "")
        pass
    cameras_instinct = cameras_instinct.split(" ")
    # print(cameras_instinct)
    model1 = camModelDict[cameras_instinct[1]]
    width1, height1 = int(cameras_instinct[2]), int(cameras_instinct[3])
    params1 = np.array([float(param) for param in cameras_instinct[4:]])
    # print(model1,width1,height1,params1)
    camera_id1 = db.add_camera(model1, width1, height1, params1)
    # print(camera_id1)

    # 图片
    with open("created/sparse/model/images.txt", "r") as images_file:
        images_list = images_file.readlines()
        pass
    for images_info in images_list:
        if images_info == "\n":
            continue
        images_info = images_info.replace("\n", "").split(" ")
        # print(images_info)
        idx = int(images_info[0])
        image_name = images_info[-1]
        # images_info[1]-[4]  QW, QX, QY, QZ
        image_q = np.array([float(q_i) for q_i in images_info[1:5]])
        # images_info[5]-[7] TX, TY, TZ
        image_t = np.array([float(t_i) for t_i in images_info[5:8]])

        image_id_from_db = db.add_image(image_name, camera_id1, prior_q=image_q, prior_t=image_t)
        if idx != image_id_from_db:
            print(f"{idx}!={image_id_from_db}")
        pass

    db.commit()
    db.close()


if __name__ == "__main__":
    # example_usage()
    create_database()

运行之后,你可以在colmap中新建项目,导入刚才的database.db文件,查看数据是否被加载进入:
在这里插入图片描述
执行:

colmap feature_extractor --database_path database.db --image_path images
colmap exhaustive_matcher --database_path database.db
colmap point_triangulator --database_path database.db --image_path images --input_path created\sparse\model --output_path triangulated\sparse\model
# 或者
colmap mapper --database_path database.db --image_path images --input_path created\sparse\model --output_path mapper\sparse\model

由于我的程序并没有给我 dense/stereo/ 目录下的 patch-match.cfg 等等,于是我自建:
执行程序:generate_fusion&patch_match.py

import numpy as np
import os


def main(folder_path):
    # 获取文件夹中所有文件名
    file_names = os.listdir(folder_path)

    # 写入文件名到txt文件
    output_file_path = 'patch-match.cfg'
    with open(output_file_path, 'w') as file:
        for file_name in file_names:
            file.write(f"{file_name}\n__auto__, 20\n")

    output_file_path = 'fusion.cfg'
    with open(output_file_path, 'w') as file:
        for file_name in file_names:
            file.write(f"{file_name}\n")


if __name__ == '__main__':
    folder_path = "images"
    main(folder_path)

将数据移入高斯(我用的三角测量的):
在这里插入图片描述
就可以在高斯中执行就 python train.py -s data/data_scene18 -m data/data_scene18 /output
但在可视化的时候老是会崩,而且colmap中进行系数重建和稠密重建的效果也不好。中间肯定还是有步骤出错了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/484563.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

windows10 WSL启动Ubuntu虚拟机,安装DolphinScheduler

文章目录 1. 启动WSL与虚拟机2. 安装Docker与DolphinScheduler容器 1. 启动WSL与虚拟机 使用管理员权限运行命令&#xff1a; Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Linux重启后即可创建虚拟机 在Microsoft Store中搜索Ubuntu&…

Wear-Any-Way——可控虚拟试衣一键试穿,可自定义穿着方式

概述 Wear-Any-Way 是阿里巴巴最新推出的虚拟试衣技术&#xff0c;它不仅可以让用户在虚拟环境中试穿衣服&#xff0c;还可以根据需要自定义衣服的样式&#xff0c;比如卷起袖子、打开或拖动外套等。这种技术的引入旨在帮助消费者更好地了解衣服在不同穿着方式下的效果&#x…

一个python实现的kline-chart图表程序(二)

前面一中简单介绍了kline-chart的图表程序&#xff0c;实际上这个程序最主要的功能不是显示K线&#xff0c;因为显示K线的程序太多了&#xff0c;没必要专门重写&#xff0c;这个程序最主要的功能是根据需要显示包含K线在内的各种指标&#xff0c;自己算的指标&#xff0c;或是…

plSql 大批量数据导入到表中

主要2种思路&#xff0c;一为insert插入sql&#xff0c;二是借助plsql提供的工具 insert语句odbc importer/导入器 insert语句 把要插入的数据转为insert语句&#xff0c;直接复制到plsql的sql窗口&#xff0c;运行即可&#xff1b;或者在命令行窗口回车键&#xff0c;选择要执…

使用 RunwayML 对图像进行 Camera 操作

RunwayML 是一個功能強大的平台&#xff0c;可以讓您使用 AI 和机器学习来增强您的图像和视频。 它提供一系列预训练模型&#xff0c;可用于各种任务&#xff0c;包括图像编辑、风格化和特效。 在本文中&#xff0c;我们将介绍如何使用 RunwayML 对图像进行 Camera 操作。我们…

[AIGC] SQL中的数据添加和操作:数据类型介绍

SQL&#xff08;结构化查询语言&#xff09;作为一种强大的数据库查询和操作工具&#xff0c;它能够完成从简单查询到复杂数据操作的各种任务。在这篇文章中&#xff0c;我们主要讨论如何在SQL中添加&#xff08;插入&#xff09;数据&#xff0c;以及在数据操作过程中&#xf…

数据结构(五)——树森林

5.4 树和森林 5.4.1 树的存储结构 树的存储1&#xff1a;双亲表示法 用数组顺序存储各结点&#xff0c;每个结点中保存数据元素、指向双亲结点(父结点)的“指针” #define MAX_TREE_SIZE 100// 树的结点 typedef struct{ElemType data;int parent; }PTNode;// 树的类型 type…

学习或复习电路的game推荐:nandgame(NAND与非门游戏)、Turing_Complete(图灵完备)

https://www.nandgame.com/ 免费 https://store.steampowered.com/app/1444480/Turing_Complete/ 收费&#xff0c;70元。据说可以导出 Verilog &#xff01;

关于安卓调用文件浏览器(一)打开并复制

背景 最近在做一个硬件产品&#xff0c;安卓应用开发。PM抽风&#xff0c;要求从app打开文件浏览器&#xff0c;跳转到指定目录&#xff0c;然后可以实现文件复制粘贴操作。 思考 从应用开发的角度看&#xff0c;从app打开系统文件浏览器并且选择文件&#xff0c;这是很常见…

馆室一体化查档平台制度有哪些

馆室一体化查档平台制度是指图书馆或档案馆在数字化和信息化的背景下&#xff0c;建立起的集查阅、借阅、咨询、文献传递等多项功能于一体的平台制度。下面是一些常见的馆室一体化查档平台制度&#xff1a; 1. 馆藏管理制度&#xff1a;包括图书和档案的采购、编目、分类、整理…

那些王道书里的题目-----计算机网络篇

注&#xff1a;仅记录个人认为有启发的题目 p155 34.下列四个地址块中&#xff0c;与地址块 172.16.166.192/26 不重叠&#xff0c;且与172.16.166.192/26聚合后的地址块不会引入多余地址的是&#xff08;&#xff09; A.172.16.166.192/27 B.172.16.166.128/26 …

day06vue2学习

day06 路由的封装抽离 问题&#xff1a;所有的路由配置都堆在main.js中不太合适么&#xff1f;不好&#xff0c;会加大代码的复杂度 目标&#xff1a;将路由模块抽离出来。好处&#xff1a;差分模块&#xff0c;利于维护。 大致的做法就是&#xff0c;将路由相关的东西都提…

codeTop102:二叉树的层序遍历

前言 在已知BFS的方式后&#xff0c;知道每次从队列中取一个节点&#xff0c;就要将这个节点的所有子节点按照顺序放入队列。 难点在于怎么确定将同一层的节点放在一个数组里面的输出&#xff0c;也就是输出一个二维数组&#xff1f; 解决方法: 每次while循环将队列上轮放入的…

蓝桥集训之矩形牛棚

蓝桥集训之矩形牛棚 核心思想&#xff1a;单调队列 模板&#xff1a;Acwing.131.直方图矩形面积首先遍历所有下界 然后确定以该下界为底的直方图 求最大矩形 #include <iostream>#include <cstring>#include <algorithm>using namespace std;const int N 30…

Java学习day2

命名规则 在JAVA中&#xff0c;公共类的明朝必须与包含该类的源文件的文件名向匹配&#xff0c;即 这两个名称要一致 变量类型 与c/c基本一致 需要注意的是&#xff0c;long类型的数据在后面需要加上l或L&#xff08;建议加L&#xff0c;l可能会被误判&#xff09;&#xff…

【Redis】优惠券秒杀

全局唯一ID 全局唯一ID生成策略&#xff1a; UUIDRedis自增snowflake算法数据库自增 Redis自增ID策略&#xff1a;每天一个key&#xff0c;方便统计订单量ID构造是 时间戳 计数器 Component public class RedisIdWorker {// 2024的第一时刻private static final long BEGIN…

【C语言】编译和链接----预处理详解【图文详解】

欢迎来CILMY23的博客喔&#xff0c;本篇为【C语言】文件操作揭秘&#xff1a;C语言中文件的顺序读写、随机读写、判断文件结束和文件缓冲区详细解析【图文详解】&#xff0c;感谢观看&#xff0c;支持的可以给个一键三连&#xff0c;点赞关注收藏。 前言 欢迎来到本篇博客&…

易语言学习第一天(安装破解和配置)

一、引言 易语言是一个自主开发&#xff0c;适合国情&#xff0c;不同层次不同专业的人员易学易用的汉语编程语言。易语言降低了广大电脑用户编程的门槛&#xff0c;尤其是根本不懂英文或者英文了解很少的用户&#xff0c;可以通过使用本语言极其快速地进入Windows程序编写的大…

全新的分布式锁,功能简单且强大

分布式锁是分布式系统中一个极为重要的工具。 目前有多种分布式锁的设计方案&#xff0c;比如借助 redis&#xff0c;mq&#xff0c;数据库&#xff0c;zookeeper 等第三方服务系统来设计分布式锁。 tldb 提供的分布式锁&#xff0c;主要是要简化这个设计的过程&#xff0c;提…

安全之剑:深度解析 Apache Shiro 框架原理与使用指南

在现代软件开发中&#xff0c;安全性一直是至关重要的一个方面。随着网络攻击和数据泄露的不断增加&#xff0c;我们迫切需要一种强大而灵活的安全框架来保护我们的应用。Shiro框架就是这样一把利剑&#xff0c;它能够轻松地集成到你的项目中&#xff0c;为你的应用提供可靠的安…