📝个人主页:五敷有你
🔥系列专栏:算法分析与设计
⛺️稳中求进,晒太阳
题目
Trie(发音类似 "try")或者说 前缀树 是一种树形数据结构,用于高效地存储和检索字符串数据集中的键。这一数据结构有相当多的应用情景,例如自动补完和拼写检查。
请你实现 Trie 类:
Trie()
初始化前缀树对象。void insert(String word)
向前缀树中插入字符串word
。boolean search(String word)
如果字符串word
在前缀树中,返回true
(即,在检索之前已经插入);否则,返回false
。boolean startsWith(String prefix)
如果之前已经插入的字符串word
的前缀之一为prefix
,返回true
;否则,返回false
。
示例:
输入 ["Trie", "insert", "search", "search", "startsWith", "insert", "search"] [[], ["apple"], ["apple"], ["app"], ["app"], ["app"], ["app"]] 输出 [null, null, true, false, true, null, true] 解释 Trie trie = new Trie(); trie.insert("apple"); trie.search("apple"); // 返回 True trie.search("app"); // 返回 False trie.startsWith("app"); // 返回 True trie.insert("app"); trie.search("app"); // 返回 True
提示:
1 <= word.length, prefix.length <= 2000
word
和prefix
仅由小写英文字母组成insert
、search
和startsWith
调用次数 总计 不超过3 * 104
次
思路
字典树又称前缀树或字典树,是一棵有根树,其每个节点包含以下字段:
插入字符串
我们从字典树的根开始,插入字符串。对于当前字符对应的子节点,有两种情况:
子节点存在。沿着指针移动到子节点,继续处理下一个字符。
子节点不存在。创建一个新的子节点,记录在children 数组的对应位置上,然后沿着指针移动到子节点,继续搜索下一个字符。
重复以上步骤,直到处理字符串的最后一个字符,然后将当前节点标记为字符串的结尾。
查找前缀
我们从字典树的根开始,查找前缀。对于当前字符对应的子节点,有两种情况:
子节点存在。沿着指针移动到子节点,继续搜索下一个字符。
子节点不存在。说明字典树中不包含该前缀,返回空指针。
重复以上步骤,直到返回空指针或搜索完前缀的最后一个字符。
若搜索到了前缀的末尾,就说明字典树中存在该前缀。此外,若前缀末尾对应节点的 isEnd为真,则说明字典树中存在该字符串。
代码实现
class Trie {
private Trie[] children;
private boolean isEnd;
public Trie() {
children = new Trie[26];
isEnd = false;
}
public void insert(String word) {
Trie node = this;
for (int i = 0; i < word.length(); i++) {
char ch = word.charAt(i);
int index = ch - 'a';
if (node.children[index] == null) {
node.children[index] = new Trie();
}
node = node.children[index];
}
node.isEnd = true;
}
public boolean search(String word) {
Trie node = searchPrefix(word);
return node != null && node.isEnd;
}
public boolean startsWith(String prefix) {
return searchPrefix(prefix) != null;
}
private Trie searchPrefix(String prefix) {
Trie node = this;
for (int i = 0; i < prefix.length(); i++) {
char ch = prefix.charAt(i);
int index = ch - 'a';
if (node.children[index] == null) {
return null;
}
node = node.children[index];
}
return node;
}
}