RabbitMq高可用

消息队列高级

  • 服务异步通信-高级篇
  • 1.消息可靠性
    • 1.1.生产者消息确认
    • 1.2.消息持久化
    • 1.3.消费者消息确认
    • 1.4.消费失败重试机制
    • 1.5.总结
  • 2.死信交换机
    • 2.1.初识死信交换机
    • 2.2.TTL
    • 2.3.延迟队列
  • 3.惰性队列
    • 3.1.消息堆积问题
    • 3.2.惰性队列
  • 4.MQ集群
    • 4.1.集群分类
    • 4.2.普通集群
    • 4.3.镜像集群
    • 4.4.仲裁队列

服务异步通信-高级篇

消息队列在使用过程中,面临着很多实际问题需要思考:

在这里插入图片描述

1.消息可靠性

消息从发送,到消费者接收,会经理多个过程:

在这里插入图片描述

其中的每一步都可能导致消息丢失,常见的丢失原因包括:

  • 发送时丢失:
    • 生产者发送的消息未送达exchange
    • 消息到达exchange后未到达queue
  • MQ宕机,queue将消息丢失
  • consumer接收到消息后未消费就宕机

针对这些问题,RabbitMQ分别给出了解决方案:

  • 生产者确认机制
  • mq持久化
  • 消费者确认机制
  • 失败重试机制

下面我们就通过案例来演示每一个步骤。

创建项目,项目结构如下:

在这里插入图片描述

1.1.生产者消息确认

RabbitMQ提供了publisher confirm机制来避免消息发送到MQ过程中丢失。这种机制必须给每个消息指定一个唯一ID。消息发送到MQ以后,会返回一个结果给发送者,表示消息是否处理成功。

返回结果有两种方式:

  • publisher-confirm,发送者确认
    • 消息成功投递到交换机,返回ack
    • 消息未投递到交换机,返回nack
  • publisher-return,发送者回执
    • 消息投递到交换机了,但是没有路由到队列。返回ACK,及路由失败原因。

在这里插入图片描述

注意:

在这里插入图片描述

1.修改配置

首先,修改publisher服务中的application.yml文件,添加下面的内容:

spring:
  rabbitmq:
    publisher-confirm-type: correlated
    publisher-returns: true
    template:
      mandatory: true

说明:

  • publish-confirm-type:开启publisher-confirm,这里支持两种类型:
    • simple:同步等待confirm结果,直到超时
    • correlated:异步回调,定义ConfirmCallback,MQ返回结果时会回调这个ConfirmCallback
  • publish-returns:开启publish-return功能,同样是基于callback机制,不过是定义ReturnCallback
  • template.mandatory:定义消息路由失败时的策略。true,则调用ReturnCallback;false:则直接丢弃消息

2.定义ReturnConfirm 回调

每个RabbitTemplate只能配置一个ReturnCallback,因此需要在项目加载时配置:

修改publisher服务,添加一个:

package cn.cloud.mq.config;

@Slf4j
@Configuration
public class CommonConfig implements ApplicationContextAware {
    @Override
    public void setApplicationContext(ApplicationContext applicationContext) throws BeansException {
        // 获取RabbitTemplate
        RabbitTemplate rabbitTemplate = applicationContext.getBean(RabbitTemplate.class);
        // 设置ReturnCallback
        rabbitTemplate.setReturnCallback((message, replyCode, replyText, exchange, routingKey) -> {
            // 投递失败,记录日志
            log.info("消息发送失败,应答码{},原因{},交换机{},路由键{},消息{}",
                    replyCode, replyText, exchange, routingKey, message.toString());
            // 如果有业务需要,可以重发消息
        });

        rabbitTemplate.setConfirmCallback(new RabbitTemplate.ConfirmCallback() {
            /**
             * @param correlationData  自定义的数据
             * @param ack  是否确认
             * @param cause  原因
             */
            @Override
            public void confirm(CorrelationData correlationData, boolean ack, String cause) {
                    if(ack){
                        // 3.1.ack,消息成功
                        log.debug("消息发送成功, ID:{}", correlationData.getId());
                    }else{
                        // 3.2.nack,消息失败
                        log.error("消息发送失败, ID:{}, 原因{}",correlationData.getId(), cause);
                    }
            }
        });
    }

     @Bean
    public DirectExchange simpleExchange(){
        // 三个参数:交换机名称、是否持久化、当没有queue与其绑定时是否自动删除
        return new DirectExchange("simple.direct", false, false);
    }
    @Bean
    public Queue simpleQueue(){
        return new Queue("simple.queue",false);
    }
    @Bean
    public Binding binding(){
        return BindingBuilder.bind(simpleQueue()).to(simpleExchange()).with("simple");
    }
}

3.发送消息测试

ConfirmCallback可以在发送消息时指定,因为每个业务处理confirm成功或失败的逻辑不一定相同。

在publisher服务的cn.cloud.mq.spring.SpringAmqpTest类中,定义一个单元测试方法:

public void testSendMessage2SimpleQueue() throws InterruptedException {
    // 1.消息体
    String message = "hello, spring amqp!";
    // 2.全局唯一的消息ID,需要封装到CorrelationData中
    CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());
    // 4.发送消息
    rabbitTemplate.convertAndSend("task.direct", "task", message, correlationData);
    // 休眠一会儿,等待ack回执
    Thread.sleep(2000);
}
  • 设置不存在的交换机尝试发送 交换机: task.direct 路由: task

  • 结果: 发送确认回调返回false消息没有正确发送到MQ中

  • ​ return回调未触发

  • 设置存在的交换机,不存在的路由尝试发送 交换机: simple.direct 路由: task

  • 结果: 发送确认回调返回true消息已经发送到MQ中

  • ​ return回调触发,返回了消息,并提示路由错误

  • 设置正确的交换机,正确的路由 交换机: simple.direct 路由: simple

  • 结果: 发送确认回调返回true消息已经发送到MQ中

  • ​ return回调未触发


结论:

通过发送确认 和 消息返还机制可以确保消息 一定能够投递到指定的队列中,如果消息没有投递成功 或返还了

也可以通过定时重新投递的方式进行补偿


1.2.消息持久化

生产者确认可以确保消息投递到RabbitMQ的队列中,但是消息发送到RabbitMQ以后,如果突然宕机,也可能导致消息丢失。

要想确保消息在RabbitMQ中安全保存,必须开启消息持久化机制。

  • 交换机持久化
  • 队列持久化
  • 消息持久化

1.交换机持久化

RabbitMQ中交换机默认是非持久化的,mq重启后就丢失。

SpringAMQP中可以通过代码指定交换机持久化:

@Bean
public DirectExchange simpleExchange(){
    // 三个参数:交换机名称、是否持久化、当没有queue与其绑定时是否自动删除
    return new DirectExchange("simple.direct", true, false);
}

事实上,默认情况下,由SpringAMQP声明的交换机都是持久化的。

可以在RabbitMQ控制台看到持久化的交换机都会带上D的标示:

在这里插入图片描述

2.队列持久化

RabbitMQ中队列如果设置成非持久化的,mq重启后就丢失。

SpringAMQP中可以通过代码指定交换机持久化:

	@Bean
    public Queue simpleQueue(){
        return new Queue("simple.queue",true);
    }

事实上,默认情况下,由SpringAMQP声明的队列都是持久化的。

可以在RabbitMQ控制台看到持久化的队列都会带上D的标示:

在这里插入图片描述

3.消息持久化

利用SpringAMQP发送消息时,可以设置消息的属性(MessageProperties),指定delivery-mode:

  • 1:非持久化
  • 2:持久化

用java代码指定:

在这里插入图片描述

默认情况下,SpringAMQP发出的任何消息都是持久化的,不用特意指定。

	@Test
    public void testSendMessage2SimpleQueue() throws InterruptedException {
        String routingKey = "simple";
        String message = "hello, spring amqp!";
        // 自定义数据
        CorrelationData data = new CorrelationData(UUID.randomUUID().toString());
        // 发送消息
        rabbitTemplate.convertAndSend("simple.direct", routingKey, message, new MessagePostProcessor() {
            // 后置处理消息
            @Override
            public Message postProcessMessage(Message message) throws AmqpException {
                // 设置消息的持久化方式
                message.getMessageProperties().setDeliveryMode(MessageDeliveryMode.NON_PERSISTENT);
                return message;
            }
        },data);
    }

1.3.消费者消息确认

RabbitMQ是阅后即焚机制,RabbitMQ确认消息被消费者消费后会立刻删除。

而RabbitMQ是通过消费者回执来确认消费者是否成功处理消息的:消费者获取消息后,应该向RabbitMQ发送ACK回执,表明自己已经处理消息。

设想这样的场景:

  • 1)RabbitMQ投递消息给消费者
  • 2)消费者获取消息后,返回ACK给RabbitMQ
  • 3)RabbitMQ删除消息
  • 4)消费者宕机,消息尚未处理

这样,消息就丢失了。因此消费者返回ACK的时机非常重要。

而SpringAMQP则允许配置三种确认模式:

  • manual:手动ack,需要在业务代码结束后,调用api发送ack。

  • auto:自动ack,由spring监测listener代码是否出现异常,没有异常则返回ack;抛出异常则返回nack

  • none:关闭ack,MQ假定消费者获取消息后会成功处理,因此消息投递后立即被删除

由此可知:

  • none模式下,消息投递是不可靠的,可能丢失
  • auto模式类似事务机制,出现异常时返回nack,消息回滚到mq;没有异常,返回ack
  • manual:自己根据业务情况,判断什么时候该ack

一般,我们都是使用默认的auto即可。

1.演示none模式

修改consumer服务的application.yml文件,添加下面内容:

spring:
  rabbitmq:
    listener:
      simple:
        acknowledge-mode: none # 关闭ack

修改consumer服务的SpringRabbitListener类中的方法,模拟一个消息处理异常:

@RabbitListener(queues = "simple.queue")
public void listenSimpleQueue(String msg) {
    log.info("消费者接收到simple.queue的消息:【{}】", msg);
    // 模拟异常
    System.out.println(1 / 0);
    log.debug("消息处理完成!");
}

测试可以发现,当消息处理抛异常时,消息依然被RabbitMQ删除了。

2.演示auto模式

再次把确认机制修改为auto:

spring:
  rabbitmq:
    listener:
      simple:
        acknowledge-mode: auto # 关闭ack

在异常位置打断点,再次发送消息,程序卡在断点时,可以发现此时消息状态为unack(未确定状态):

在这里插入图片描述

抛出异常后,因为Spring会自动返回nack,所以消息恢复至Ready状态,并且没有被RabbitMQ删除:

在这里插入图片描述

1.4.消费失败重试机制

当消费者出现异常后,消息会不断requeue(重入队)到队列,再重新发送给消费者,然后再次异常,再次requeue,无限循环,导致mq的消息处理飙升,带来不必要的压力:

在这里插入图片描述

怎么办呢?

1.本地重试

我们可以利用Spring的retry机制,在消费者出现异常时利用本地重试,而不是无限制的requeue到mq队列。

修改consumer服务的application.yml文件,添加内容:

spring:
  rabbitmq:
    listener:
      simple:
        retry:
          enabled: true # 开启消费者失败重试
          initial-interval: 1000ms # 初识的失败等待时长为1秒
          multiplier: 1 # 失败的等待时长倍数,下次等待时长 = multiplier * last-interval
          max-attempts: 3 # 最大重试次数
          stateless: true # true无状态;false有状态。如果业务中包含事务,这里改为false

重启consumer服务,重复之前的测试。可以发现:

  • 在重试3次后,SpringAMQP会抛出异常AmqpRejectAndDontRequeueException,说明本地重试触发了
  • 查看RabbitMQ控制台,发现消息被删除了,说明最后SpringAMQP返回的是ack,mq删除消息了

结论:

  • 开启本地重试时,消息处理过程中抛出异常,不会requeue到队列,而是在消费者本地重试
  • 重试达到最大次数后,Spring会返回ack,消息会被丢弃

2.失败策略

在之前的测试中,达到最大重试次数后,消息会被丢弃,这是由Spring内部机制决定的。

在开启重试模式后,重试次数耗尽,如果消息依然失败,则需要有MessageRecovery接口来处理,它包含三种不同的实现:

  • RejectAndDontRequeueRecoverer:重试耗尽后,直接reject,丢弃消息。默认就是这种方式

  • ImmediateRequeueMessageRecoverer:重试耗尽后,返回nack,消息重新入队

  • RepublishMessageRecoverer:重试耗尽后,将失败消息投递到指定的交换机

比较优雅的一种处理方案是RepublishMessageRecoverer,失败后将消息投递到一个指定的,专门存放异常消息的队列,后续由人工集中处理。

1)在consumer服务中定义处理失败消息的交换机和队列

@Bean
public DirectExchange errorMessageExchange(){
    return new DirectExchange("error.direct");
}
@Bean
public Queue errorQueue(){
    return new Queue("error.queue", true);
}
@Bean
public Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){
    return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");
}

2)定义一个RepublishMessageRecoverer,关联队列和交换机

@Bean
public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){
    return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
}

完整代码:

package cn.cloud.mq.config;

import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.DirectExchange;
import org.springframework.amqp.core.Queue;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.amqp.rabbit.retry.MessageRecoverer;
import org.springframework.amqp.rabbit.retry.RepublishMessageRecoverer;
import org.springframework.context.annotation.Bean;

@Configuration
public class ErrorMessageConfig {
    @Bean
    public DirectExchange errorMessageExchange(){
        return new DirectExchange("error.direct");
    }
    @Bean
    public Queue errorQueue(){
        return new Queue("error.queue", true);
    }
    @Bean
    public Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){
        return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");
    }

    @Bean
    public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){
        return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
    }
}

1.5.总结

如何确保RabbitMQ消息的可靠性?

  • 开启生产者确认机制,确保生产者的消息能到达队列
  • 开启持久化功能,确保消息未消费前在队列中不会丢失
  • 开启消费者确认机制为auto,由spring确认消息处理成功后完成ack
  • 开启消费者失败重试机制,并设置MessageRecoverer,多次重试失败后将消息投递到异常交换机,交由人工处理

2.死信交换机

2.1.初识死信交换机

1.什么是死信交换机

什么是死信?

当一个队列中的消息满足下列情况之一时,可以成为死信(dead letter):

  • 消费者使用basic.reject或 basic.nack声明消费失败,并且消息的requeue参数(设置重新回到队列)设置为false
  • 消息是一个过期消息,超时无人消费
  • 要投递的队列消息满了,无法投递

如果这个包含死信的队列配置了dead-letter-exchange属性,指定了一个交换机,那么队列中的死信就会投递到这个交换机中,而这个交换机称为死信交换机(Dead Letter Exchange,检查DLX)。

如图,一个消息被消费者拒绝了,变成了死信:

在这里插入图片描述

因为simple.queue绑定了死信交换机 dl.direct,因此死信会投递给这个交换机:

在这里插入图片描述

如果这个死信交换机也绑定了一个队列,则消息最终会进入这个存放死信的队列:

在这里插入图片描述

另外,队列将死信投递给死信交换机时,必须知道两个信息:

  • 死信交换机名称
  • 死信交换机与死信队列绑定的RoutingKey

这样才能确保投递的消息能到达死信交换机,并且正确的路由到死信队列。

在这里插入图片描述

2.利用死信交换机接收死信(拓展)

在失败重试策略中,默认的RejectAndDontRequeueRecoverer会在本地重试次数耗尽后,发送reject给RabbitMQ,消息变成死信,被丢弃。

在consumer中CommonConfig 修改消息策略

   	// 修改 失败消息策略
	@Bean
    public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){
//        return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
        return new RejectAndDontRequeueRecoverer();
    }

我们可以给simple.queue添加一个死信交换机,给死信交换机绑定一个队列。这样消息变成死信后也不会丢弃,而是最终投递到死信交换机,路由到与死信交换机绑定的队列。

在这里插入图片描述

我们在producer服务CommonConfig中,定义一组死信交换机、死信队列:

	@Bean
    public Queue simpleQueue(){
        return QueueBuilder.durable("simple.queue") // 指定队列名称,并持久化
                .deadLetterExchange("dl.direct") // 指定死信交换机
            	.deadLetterRoutingKey("dl") //设置路由
                .build();
    }
    // 声明死信交换机 dl.direct
    @Bean
    public DirectExchange dlExchange(){
        return new DirectExchange("dl.direct", true, false);
    }
    // 声明存储死信的队列 dl.queue
    @Bean
    public Queue dlQueue(){
        return new Queue("dl.queue", true);
    }
    // 将死信队列 与 死信交换机绑定
    @Bean
    public Binding dlBinding(){
        return BindingBuilder.bind(dlQueue()).to(dlExchange()).with("dl");
    }

注意:

之前我们已经声明过simple.queue队列了,而再次声明的simple.queue 多了些属性。 启动时不会覆盖之前队列,而是会报错,

需要删除simple.queue队列后再次创建

3.总结

什么样的消息会成为死信?

  • 消息被消费者reject或者返回nack
  • 消息超时未消费
  • 队列满了

死信交换机的使用场景是什么?

  • 如果队列绑定了死信交换机,死信会投递到死信交换机;
  • 可以利用死信交换机收集所有消费者处理失败的消息(死信),交由人工处理,进一步提高消息队列的可靠性。

2.2.TTL

一个队列中的消息如果超时未消费,则会变为死信,超时分为两种情况:

  • 消息所在的队列设置了超时时间
  • 消息本身设置了超时时间

在这里插入图片描述

1.接收超时死信的死信交换机

在consumer服务的SpringRabbitListener中,定义一个新的消费者,并且声明 死信交换机、死信队列:

@RabbitListener(bindings = @QueueBinding(
    value = @Queue(name = "dl.ttl.queue", durable = "true"),
    exchange = @Exchange(name = "dl.ttl.direct"),
    key = "ttl"
))
public void listenDlQueue(String msg){
    log.info("接收到 dl.ttl.queue的延迟消息:{}", msg);
}

2.声明一个队列,并且指定TTL

要给队列设置超时时间,需要在声明队列时配置x-message-ttl属性:

@Bean
public Queue ttlQueue(){
    return QueueBuilder.durable("ttl.queue") // 指定队列名称,并持久化
        .ttl(10000) // 设置队列的超时时间,10秒
        .deadLetterExchange("dl.ttl.direct") // 指定死信交换机
        .build();
}

注意,这个队列设定了死信交换机为dl.ttl.direct

声明交换机,将ttl与交换机绑定:

@Bean
public DirectExchange ttlExchange(){
    return new DirectExchange("ttl.direct");
}
@Bean
public Binding ttlBinding(){
    return BindingBuilder.bind(ttlQueue()).to(ttlExchange()).with("ttl");
}

发送消息,但是不要指定TTL:

@Test
public void testTTLQueue() {
    // 创建消息
    String message = "hello, ttl queue";
    // 消息ID,需要封装到CorrelationData中
    CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());
    // 发送消息
    rabbitTemplate.convertAndSend("ttl.direct", "ttl", message, correlationData);
    // 记录日志
    log.debug("发送消息成功");
}

发送消息的日志:

在这里插入图片描述

查看下接收消息的日志:

在这里插入图片描述

因为队列的TTL值是10000ms,也就是10秒。可以看到消息发送与接收之间的时差刚好是10秒。

3.发送消息时,设定TTL

在发送消息时,也可以指定TTL:

@Test
public void testTTLMsg() {
    // 创建消息
    Message message = MessageBuilder
        .withBody("hello, ttl message".getBytes(StandardCharsets.UTF_8))
        .setExpiration("5000")
        .build();
    // 消息ID,需要封装到CorrelationData中
    CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());
    // 发送消息
    rabbitTemplate.convertAndSend("ttl.direct", "ttl", message, correlationData);
    log.debug("发送消息成功");
}

查看发送消息日志:

在这里插入图片描述

接收消息日志:

在这里插入图片描述

这次,发送与接收的延迟只有5秒。说明当队列、消息都设置了TTL时,任意一个到期就会成为死信。也就是说按照短的来生效。

4.总结

消息超时的两种方式是?

  • 给队列设置ttl属性,进入队列后超过ttl时间的消息变为死信
  • 给消息设置ttl属性,队列接收到消息超过ttl时间后变为死信

如何实现发送一个消息20秒后消费者才收到消息?

  • 给消息的目标队列指定死信交换机
  • 将消费者监听的队列绑定到死信交换机
  • 发送消息时给消息设置超时时间为20秒

2.3.延迟队列

利用TTL结合死信交换机,我们实现了消息发出后,消费者延迟收到消息的效果。这种消息模式就称为延迟队列(Delay Queue)模式。

延迟队列的使用场景包括:

  • 延迟发送短信
  • 用户下单,如果用户在15 分钟内未支付,则自动取消
  • 预约工作会议,20分钟后自动通知所有参会人员

因为延迟队列的需求非常多,所以RabbitMQ的官方也推出了一个插件,原生支持延迟队列效果。

这个插件就是DelayExchange插件。参考RabbitMQ的插件列表页面:https://www.rabbitmq.com/community-plugins.html

在这里插入图片描述

使用方式可以参考官网地址:https://blog.rabbitmq.com/posts/2015/04/scheduling-messages-with-rabbitmq

1.安装DelayExchange插件

参考:https://blog.csdn.net/m0_62943934/article/details/136952260

2.DelayExchange原理

DelayExchange需要将一个交换机声明为delayed类型。当我们发送消息到delayExchange时,流程如下:

  • 接收消息
  • 判断消息是否具备x-delay属性
  • 如果有x-delay属性,说明是延迟消息,持久化到硬盘,读取x-delay值,作为延迟时间
  • 返回routing not found结果给消息发送者
  • x-delay时间到期后,重新投递消息到指定队列

3.使用DelayExchange

插件的使用也非常简单:声明一个交换机,交换机的类型可以是任意类型,只需要设定delayed属性为true即可,然后声明队列与其绑定即可。

1)声明DelayExchange交换机

基于注解方式(推荐):

@RabbitListener(bindings = @QueueBinding(
        value = @Queue(name = "delay.queue", durable = "true"),
        exchange = @Exchange(name = "delay.direct",delayed = "true"),
        key = "delay"
))
public void listenDelayedQueue(String msg){
    log.info("接收到 delay.queue的延迟消息:{}", msg);
}

也可以基于@Bean的方式:

在这里插入图片描述

2)发送消息

发送消息时,一定要携带x-delay属性,指定延迟的时间:

@Test
public void testDelayedMsg() {
    // 创建消息
    Message message = MessageBuilder
            .withBody("hello, delay message".getBytes(StandardCharsets.UTF_8))
            .setHeader("x-delay",10000)
            .build();
    // 消息ID,需要封装到CorrelationData中
    CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());
    // 发送消息
    rabbitTemplate.convertAndSend("delay.direct", "delay", message, correlationData);
    log.debug("发送消息成功");
}

4.总结

延迟队列插件的使用步骤包括哪些?

•声明一个交换机,添加delayed属性为true

•发送消息时,添加x-delay头,值为超时时间

3.惰性队列

3.1.消息堆积问题

当生产者发送消息的速度超过了消费者处理消息的速度,就会导致队列中的消息堆积,直到队列存储消息达到上限。之后发送的消息就会成为死信,可能会被丢弃,这就是消息堆积问题。

https://blog.csdn.net/cuibin1991/article/details/107930479

在这里插入图片描述

解决消息堆积有两种思路:

  • 增加更多消费者,提高消费速度。也就是我们之前说的work queue模式
  • 扩大队列容积,提高堆积上限

要提升队列容积,把消息保存在内存中显然是不行的。

3.2.惰性队列

从RabbitMQ的3.6.0版本开始,就增加了Lazy Queues的概念,也就是惰性队列。惰性队列的特征如下:

  • 接收到消息后直接存入磁盘而非内存
  • 消费者要消费消息时才会从磁盘中读取并加载到内存
  • 支持数百万条的消息存储

1.基于命令行设置lazy-queue

而要设置一个队列为惰性队列,只需要在声明队列时,指定x-queue-mode属性为lazy即可。可以通过命令行将一个运行中的队列修改为惰性队列:

rabbitmqctl set_policy Lazy "^lazy-queue$" '{"queue-mode":"lazy"}' --apply-to queues

命令解读:

  • rabbitmqctl :RabbitMQ的命令行工具
  • set_policy :添加一个策略
  • Lazy :策略名称,可以自定义
  • "^lazy-queue$" :用正则表达式匹配队列的名字
  • '{"queue-mode":"lazy"}' :设置队列模式为lazy模式
  • --apply-to queues :策略的作用对象,是所有的队列

2.基于@Bean声明lazy-queue

在这里插入图片描述

3.基于@RabbitListener声明LazyQueue

在这里插入图片描述

测试 :

声明一个惰性队列 一个普通队列

// 惰性队列
@Bean
public Queue lazyQueue(){
    return QueueBuilder.durable("lazy.queue")
            .lazy()
            .build();
}
// 普通队列
@Bean
public Queue normalQueue(){
    return QueueBuilder.durable("normal.queue")
            .build();
}

测试发送20万条消息,到普通队列 及 惰性队列

@Test
public void testSendManyMsg(){

    long startTime = System.currentTimeMillis();
    for (int i = 0; i < 200000; i++) {
        CorrelationData data = new CorrelationData(UUID.randomUUID().toString());
        rabbitTemplate.convertAndSend( "","lazy.queue", "message "+i,data);
    }
    long endTime = System.currentTimeMillis();
    System.out.println("批量发送消息 消耗时间: " + (endTime - startTime));
}

3.总结

消息堆积问题的解决方案?

  • 队列上绑定多个消费者,提高消费速度
  • 使用惰性队列,可以再mq中保存更多消息

惰性队列的优点有哪些?

  • 基于磁盘存储,消息上限高
  • 没有间歇性的page-out,性能比较稳定

惰性队列的缺点有哪些?

  • 基于磁盘存储,消息时效性会降低
  • 性能受限于磁盘的IO

4.MQ集群

4.1.集群分类

RabbitMQ的是基于Erlang语言编写,而Erlang又是一个面向并发的语言,天然支持集群模式。RabbitMQ的集群有两种模式:

  • 普通集群:是一种分布式集群,将队列分散到集群的各个节点,从而提高整个集群的并发能力。

  • 镜像集群:是一种主从集群,普通集群的基础上,添加了主从备份功能,提高集群的数据可用性。

镜像集群虽然支持主从,但主从同步并不是强一致的,某些情况下可能有数据丢失的风险。因此在RabbitMQ的3.8版本以后,推出了新的功能:仲裁队列来代替镜像集群,底层采用Raft协议确保主从的数据一致性。

4.2.普通集群

1.集群结构和特征

普通集群,或者叫标准集群(classic cluster),具备下列特征:

  • 会在集群的各个节点间共享部分数据,包括:交换机、队列元信息。不包含队列中的消息。
  • 当访问集群某节点时,如果队列不在该节点,会从数据所在节点传递到当前节点并返回
  • 队列所在节点宕机,队列中的消息就会丢失

结构如图:

在这里插入图片描述

2.部署

参考 :https://blog.csdn.net/m0_62943934/article/details/136952260

4.3.镜像集群

1.集群结构和特征

镜像集群:本质是主从模式,具备下面的特征:

  • 交换机、队列、队列中的消息会在各个mq的镜像节点之间同步备份。
  • 创建队列的节点被称为该队列的主节点,备份到的其它节点叫做该队列的镜像节点。
  • 一个队列的主节点可能是另一个队列的镜像节点
  • 所有操作都是主节点完成,然后同步给镜像节点
  • 主宕机后,镜像节点会替代成新的主

结构如图:

在这里插入图片描述

2.部署

参考 :https://blog.csdn.net/m0_62943934/article/details/136952260

4.4.仲裁队列

1.集群特征

仲裁队列:仲裁队列是3.8版本以后才有的新功能,用来替代镜像队列,具备下列特征:

  • 与镜像队列一样,都是主从模式,支持主从数据同步
  • 使用非常简单,没有复杂的配置
  • 主从同步基于Raft协议,强一致

2.部署

参考 :https://blog.csdn.net/m0_62943934/article/details/136952260

3.Java代码创建仲裁队列

@Bean
public Queue quorumQueue() {
    return QueueBuilder
        .durable("quorum.queue") // 持久化
        .quorum() // 仲裁队列
        .build();
}

4.SpringAMQP连接MQ集群

注意,这里用address来代替host、port方式

spring:
  rabbitmq:
    addresses: 192.168.150.105:8071, 192.168.150.105:8072, 192.168.150.105:8073
    username: cloud
    password: 123321
    virtual-host: /
mq : 作用  使用场景

常见消息队列:  rabbitmq

rabbitmq 实现AMQP协议:

rabbitmq 支持消息模式:   简单模式    work工作队列     广播    路由    主题模式

                             ""               fanout    direct    topic
mq 项目中的实际使用场景

mq 如何保证mq可靠性 / 100%消费成功 / 消息不丢失

mq 消息重试机制

mq 延迟队列

mq 中如果消息堆积问题

mq 如何保证高可用
    普通集群
    镜像集群
    仲裁队列

mq 消费者如何保证消费的幂等性
		判断 文章状态是否4 或 8
		判断 文章自动审核  1

		基于redis   消息生成全局ID

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/483280.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

矩阵计算-线性系统和 LU 分解

一、三角系统 …… 二、高斯消元法 …… 三、LU分解--直接三角分解法 求解线性方程Axb&#xff1a; 参考视频&#xff1a;【数值分析】矩阵LU三角分解| 速成讲解 考试宝典_哔哩哔哩_bilibili 令ALU&#xff0c;其中L是单位下三角矩阵&#xff08;对角线上元素都是1&#xff…

【漏洞复现】netgear路由器 boarddataww 存在RCE漏洞

免责声明&#xff1a;文章来源互联网收集整理&#xff0c;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失&#xff0c;均由使用者本人负责&#xff0c;所产生的一切不良后果与文章作者无关。该…

PAT题解 --- 寻宝图

今天是PTA题库解法讲解的第十天&#xff0c;今天我们要讲解浪漫侧影&#xff0c;题目如下&#xff1a; 题解思路&#xff1a; 要解决这个问题&#xff0c;可以使用深度优先搜索&#xff08;DFS&#xff09;方法来遍历每一个陆地或宝藏格子&#xff0c;标记所有与之相连的格子…

【JavaScript 漫游】【042】表单和FormData 对象

文章简介 本篇文章为【JavaScript 漫游】专栏的第 042 篇文章&#xff0c;对浏览器模型中的表单和 FormData 对象的知识点进行了总结。 表单概述 表单&#xff08;<form>&#xff09;用来收集用户提交的数据&#xff0c;发送到服务器。比如&#xff0c;用户提交用户名…

面试算法-87-分隔链表

题目 给你一个链表的头节点 head 和一个特定值 x &#xff0c;请你对链表进行分隔&#xff0c;使得所有 小于 x 的节点都出现在 大于或等于 x 的节点之前。 你应当 保留 两个分区中每个节点的初始相对位置。 示例 1&#xff1a; 输入&#xff1a;head [1,4,3,2,5,2], x …

2024年 前端JavaScript Web APIs 第五天 笔记

5.1-BOM和延迟函数setTimeout 5.2-事件循环eventloop 1-》 3 -》2 1-》 3 -》2 5.3-location对象 案例&#xff1a;5秒钟之后自动跳转页面 <body><a href"http://www.itcast.cn">支付成功<span>5</span>秒钟之后跳转到首页</a><sc…

利用API打造卓越的用户体验

&#x1f34e;个人博客&#xff1a;个人主页 &#x1f3c6;个人专栏&#xff1a;日常聊聊 ⛳️ 功不唐捐&#xff0c;玉汝于成 目录 正文 1. 数据驱动的设计 2. 功能扩展与整合 3. 实时性与响应性 4. 个性化推荐与定制化服务 结语 我的其他博客 正文 随着数字化时代的…

程序设计语言+嵌入式系统设计师备考笔记

0、前言 本专栏为个人备考软考嵌入式系统设计师的复习笔记&#xff0c;未经本人许可&#xff0c;请勿转载&#xff0c;如发现本笔记内容的错误还望各位不吝赐教&#xff08;笔记内容可能有误怕产生错误引导&#xff09;。 1、嵌入式系统开发与设计 1.1嵌入式应用程序的生成与加…

机器学习基础知识面经(个人记录)

朴素贝叶斯 特征为理想状态下的独立同分布&#xff0c;作为机器学习的重要基石和工具 由贝叶斯公式推导而来 是后验概率&#xff1a;在B发生的条件下A发生的概率。 是似然概率: 在 发生的条件下 发生的概率。 是先验概率: 发生的概率&#xff0c;而不考虑 的影响。 是…

Redis入门到实战-第五弹

Redis实战热身Hashes篇 完整命令参考官网 官网地址 声明: 由于操作系统, 版本更新等原因, 文章所列内容不一定100%复现, 还要以官方信息为准 https://redis.io/Redis概述 Redis是一个开源的&#xff08;采用BSD许可证&#xff09;&#xff0c;用作数据库、缓存、消息代理和…

【Java初阶(四)】数组的定义和使用

❣博主主页: 33的博客❣ ▶文章专栏分类: Java从入门到精通◀ &#x1f69a;我的代码仓库: 33的代码仓库&#x1f69a; 目录 1.前言2.数组的概念2.1数组的初始化2.2数组的使用2.2.1数组元素访问2.2.2遍历数组 3.数组是引用类型3.1实例3.2 认识null 4.数组的应用4.1 二分查找4.2…

合成孔径雷达干涉测量InSAR数据处理、地形三维重建、形变信息提取、监测

原文链接&#xff1a;合成孔径雷达干涉测量InSAR数据处理、地形三维重建、形变信息提取、监测https://mp.weixin.qq.com/s?__bizMzUzNTczMDMxMg&mid2247598798&idx7&snc054ed7c9d9c433d00837a7798080935&chksmfa820329cdf58a3f6b5986d6d4da3d19f81e3efd0b159f…

YOLOv9/YOLOv8算法改进【NO.106】使用YOLOv7下采样进行改进

前 言 YOLO算法改进系列出到这&#xff0c;很多朋友问改进如何选择是最佳的&#xff0c;下面我就根据个人多年的写作发文章以及指导发文章的经验来看&#xff0c;按照优先顺序进行排序讲解YOLO算法改进方法的顺序选择。具体有需求的同学可以私信我沟通&#xff1a; 首推…

米多论文怎么用 #学习方法#职场发展

米多论文是一款专为论文写作者设计的工具&#xff0c;可以帮助用户进行论文的查重和降重。它的使用非常简单&#xff0c;只需将需要检测的论文内容粘贴到相应的输入框中&#xff0c;点击“检测”按钮即可开始查重。米多论文通过比对用户提交的论文和互联网上已经存在的内容&…

零基础机器学习(4)之线性回归的基本原理

文章目录 一、线性回归的基本原理1.相关与回归2.线性回归的原理分析①线性回归的一般公式②线性回归的损失函数③线性回归方程的参数求解方法A.最小二乘法B.梯度下降法 一、线性回归的基本原理 1.相关与回归 相关描述的是变量之间的一种关系。 从统计角度看&#xff0c;变量之…

数据结构面试题

1、数据结构三要素&#xff1f; 逻辑结构、物理结构、数据运算 2、数组和链表的区别&#xff1f; 数组的特点&#xff1a; 数组是将元素在内存中连续存放&#xff0c;由于每个元素占用内存相同&#xff0c;可以通过下标迅速访问数组中任何元素。数组的插入数据和删除数据效率低…

自己动手做一个批量doc转换为docx文件的小工具

前言 最近遇到了一个需求&#xff0c;就是要把大量的doc格式文件转换为docx文件&#xff0c;因此就动手做了一个批量转换的小工具。 背景 doc文件是什么&#xff1f; “doc” 文件是一种常见的文件格式&#xff0c;通常用于存储文本文档。它是 Microsoft Word 文档的文件扩…

主干网络篇 | YOLOv8更换主干网络之SwinTransformer

前言:Hello大家好,我是小哥谈。Swin Transformer是一种基于Transformer架构的图像分类模型,与传统的Transformer模型不同,Swin Transformer通过引入分层的窗口机制来处理图像,从而解决了传统Transformer在处理大尺寸图像时的计算和内存开销问题。Swin Transformer的核心思…

【算法】环形纸牌均分问题

104. 货仓选址 - AcWing题库 有n家商店&#xff0c;求把货仓建在哪能使得货仓到每个点的距离总和最小&#xff0c;输出最短的距离总和。 首先&#xff0c;我们看只有两个点的情况&#xff0c;在这种情况下我们选[1,2]的任何一个位置都是一样的&#xff0c;总和就是这段区间的长…

利用sealos安装k8s集群

1. 环境准备 准备三台干净&#xff08;未安装过k8s环境&#xff09;的虚拟机 # 所有的主机都要配置主机名和域名映射 # 设置主机名 hostnamectl set-hostname k8s-master01 # vim /etc/hosts 192.168.59.201 k8s-master01 192.168.59.202 k8s-worker01 192.168.59.203 k8…