深度学习(过拟合 欠拟合)

过拟合: 

深度学习模型由于其复杂性,往往容易出现过拟合的问题。以下是一些深度学习中常见的过拟合原因和解决方法:

1. 数据量不足:深度学习模型通常需要大量的数据来进行训练,如果数据量不足,模型容易过度拟合训练集。解决方法包括增加数据集的规模,或者使用数据增强技术来生成更多的数据样本。

2. 模型复杂度过高:如果深度学习模型的层数或参数过多,模型容易过度拟合训练数据。解决方法包括减少模型层数,减少模型参数数量,或者通过正则化(如L1、L2正则化)加入额外的约束限制模型的复杂度。

3. 缺乏正则化:正则化是一种常用的降低模型过拟合的方法,可以通过在损失函数中加入正则化项来约束模型的复杂度。常见的正则化方法包括L1/L2正则化、Dropout等。

4. 数据标签错误或不平衡:数据集中的标签错误或不均衡会影响模型的学习和泛化能力,导致过拟合。解决方法包括仔细检查数据集并修正标签错误,或者采用数据平衡技术,如欠采样、过采样等。

5. 训练集与测试集分布不一致:如果训练集与测试集的分布不一致,模型将无法很好地泛化到新的数据上。解决方法包括确保训练集和测试集的数据来源和分布相似,或者使用领域适应技术来使模型更好地适应新的数据。

6. 提前停止:通过监控模型在验证集上的性能,当模型在验证集上的性能开始下降时,及时停止训练,可以避免过拟合。

综上所述,深度学习中的过拟合问题可以通过增加数据量、降低模型复杂度、添加正则化、修正数据标签、平衡数据分布、提前停止等方法来解决。在实践中,需要根据具体情况选择合适的方法来降低过拟合的风险。

欠拟合: 

欠拟合是指模型无法充分拟合训练数据的情况,导致模型在训练集上的性能不佳,也无法在测试集或新的样本上良好地泛化。

以下是一些深度学习中常见的欠拟合原因和解决方法:

1. 模型复杂度不足:深度学习模型可能过于简单,无法捕捉到数据中的复杂关系。解决方法包括增加模型的层数,增加模型的宽度(增加隐藏层的神经元数量),或者使用更复杂的模型架构(如使用更多的卷积核、更深的网络结构)。

2. 数据量不足:如果训练数据太少,模型可能无法学习到充分的特征表示。解决方法包括增加数据集的规模,或者使用数据增强技术来生成更多的数据样本。

3. 特征选择不当:如果选择的特征不足以表示数据的复杂性,模型无法充分学习数据的特征。解决方法包括增加更多的特征,或者使用更好的特征工程技术(如使用更高级的特征提取方法、使用领域专业知识进行特征选择等)。

4. 学习率过高或过低:学习率是指模型在每次更新参数时的步长,过高或过低的学习率都会导致模型无法达到良好的拟合效果。解决方法包括适当调整学习率,可以通过网格搜索或使用自适应学习率算法(如Adam等)来寻找最佳的学习率。

5. 过拟合的解决方法:很多过拟合解决方法也可用于欠拟合问题,如增加数据量、降低模型复杂度、添加正则化等。

综上所述,欠拟合问题可以通过增加模型复杂度、增加数据量、优化特征选择、调整学习率等方法来解决。在实践中,需要根据具体情况选择合适的方法来提高模型的性能。

代码:

#@tab pytorch
from d2l import torch as d2l
import torch
from torch import nn
import numpy as np
import math


#@tab all 生成数据集
max_degree = 20  # 多项式的最大阶数
n_train, n_test = 100, 100  # 训练和测试数据集大小
true_w = np.zeros(max_degree)  # 分配大量的空间
true_w[0:4] = np.array([5, 1.2, -3.4, 5.6])#真实权重

features = np.random.normal(size=(n_train + n_test, 1))#随机特征
np.random.shuffle(features)
poly_features = np.power(features, np.arange(max_degree).reshape(1, -1))
for i in range(max_degree):
    poly_features[:, i] /= math.gamma(i + 1)  # gamma(n)=(n-1)!
# labels的维度:(n_train+n_test,)
labels = np.dot(poly_features, true_w)
labels += np.random.normal(scale=0.1, size=labels.shape)

# NumPy ndarray转换为tensor
true_w, features, poly_features, labels = [d2l.tensor(x, dtype=
    d2l.float32) for x in [true_w, features, poly_features, labels]]

#实现一个函数来评估模型在给定数据集上的损失
def evaluate_loss(net, data_iter, loss):  
    """评估给定数据集上模型的损失"""
    metric = d2l.Accumulator(2)  # 损失的总和,样本数量
    for X, y in data_iter:
        out = net(X)
        y = d2l.reshape(y, out.shape)
        l = loss(out, y)
        metric.add(d2l.reduce_sum(l), d2l.size(l))
    return metric[0] / metric[1]

#训练模型
def train(train_features, test_features, train_labels, test_labels,
          num_epochs=400):
    loss = nn.MSELoss()#损失函数
    input_shape = train_features.shape[-1]
    # 不设置偏置,因为我们已经在多项式中实现了它
    
    net = nn.Sequential(nn.Linear(input_shape, 1, bias=False))#单层线性回归
    batch_size = min(10, train_labels.shape[0])
    train_iter = d2l.load_array((train_features, train_labels.reshape(-1,1)),
                                batch_size)
    test_iter = d2l.load_array((test_features, test_labels.reshape(-1,1)),
                               batch_size, is_train=False)
    
    trainer = torch.optim.SGD(net.parameters(), lr=0.01)
    animator = d2l.Animator(xlabel='epoch', ylabel='loss', yscale='log',
                            xlim=[1, num_epochs], ylim=[1e-3, 1e2],
                            legend=['train', 'test'])

    for epoch in range(num_epochs):
        d2l.train_epoch_ch3(net, train_iter, loss, trainer)
        if epoch == 0 or (epoch + 1) % 20 == 0:
            animator.add(epoch + 1, (evaluate_loss(net, train_iter, loss),
                                     evaluate_loss(net, test_iter, loss)))
    print('weight:', net[0].weight.data.numpy())

 正常模型:

# 从多项式特征中选择前4个维度,即1,x,x^2/2!,x^3/3!
train(poly_features[:n_train, :4], poly_features[n_train:, :4],
      labels[:n_train], labels[n_train:])

欠拟合模型:

# 欠拟合,欠拟合是指模型无法继续减少训练误差
# 从多项式特征中选择前2个维度,即1和x,实际上有四个特征
train(poly_features[:n_train, :2], poly_features[n_train:, :2],
      labels[:n_train], labels[n_train:])

过拟合模型:

#@tab all,过拟合是指训练误差远小于验证误差
# 从多项式特征中选取所有维度(20个),实际只有四个
train(poly_features[:n_train, :], poly_features[n_train:, :],
      labels[:n_train], labels[n_train:],num_epochs=1250)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/482972.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python界面库Flet(1)介绍和快速使用

Python界面库Flet(1)快速上手使用 Author:Once Day Date:2024年3月19日 一位热衷于Linux学习和开发的菜鸟,试图谱写一场冒险之旅,也许终点只是一场白日梦… 漫漫长路,有人对你微笑过嘛… 全系列文章可参考专栏: Pyt…

Collection与数据结构 数据结构预备知识(二):包装类与泛型

1.包装类 在Java中,由于基本类型不是继承自Object,为了在泛型代码中可以支持基本类型,Java给每个基本类型都对应了一个包装类.可以把包装类理解为基本数据类型所对应的引用数据类型. 1.1基本数据类型与对应的包装类 基本数据类型包装类byteByteshortShortintIntegerlongLong…

基于springboot+vue的旅游网站

博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战,欢迎高校老师\讲师\同行交流合作 ​主要内容:毕业设计(Javaweb项目|小程序|Pyt…

【wails】(10):研究go-llama.cpp项目,但是发现不支持最新的qwen大模型,可以运行llama-2-7b-chat

1,视频演示地址 2,项目地址go-llama.cpp 下载并进行编译: git clone --recurse-submodules https://github.com/go-skynet/go-llama.cpp cd go-llama.cpp make libbinding.a项目中还打了个补丁: 给 编译成功,虽然有…

C#新语法(持续更新)

文章目录 顶级语句全局using 指令Using资源管理文件范围的命名空间声明可空的引用类型记录(record)类型 顶级语句 C#9.0中直接在C#文件中直接编写入口方法的代码,不用类,不用Main。同一个项目中只能有一个文件具有顶级语句。顶级语句中可以直接使用await…

Mysql数据库深入理解

目录 一、什么是数据库 二、Mysql基本架构图 1.Mysql客户端/服务器架构 2.客户端与服务器的连接过程 3.服务器处理客户端请求 4.一条查询SQL执行顺序 4.1连接器 4.2查询缓存 4.3解析器 4.4执行器 4.4.1预处理阶段 4.4.2优化阶段 4.4.3执行阶段 5.一条记录如何存…

汇丰:当前的美股是泡沫吗?

汇丰认为,当前的风险资产并不构成泡沫,更类似于2017年的市场环境,风险资产有望继续稳步上升。 隔夜美股飙涨,标普创三个月最大周涨,纳指收盘创历史新高。结合去年以来的强劲表现,有观点认为由科技股支撑的…

网络安全笔记-day7,共享文件服务器

文件共享服务器 准备阶段 打开虚拟机win2003 创建文件 D:. —share   –down   |  test1.txt   |   —up     01xxx.txt     02xxx.txt 配置IP win2003 192.168.1.10 255.255.255.0 winxp 192.168.1.20 255.255.255.0 创建共享文件夹 创建共享&#xff1…

freeRTOS动态内存heap4源码分析

1 前言 随着功能安全的推广,动态内存分配在RTOS领域的用武之地将越来越小。但heap4毕竟是为RTOS量身打造,相对简单,作为堆内存管理的入门学习,仍是很不错的选择。 1.1 标准c库动态内存函数的弊端 对于标准C库的malloc和free函数&…

阿里云2核4G服务器优惠价格30元、165元和199元1年,轻量和ECS

阿里云2核4G服务器租用优惠价格,轻量2核4G服务器165元一年、u1服务器2核4G5M带宽199元一年、云服务器e实例30元3个月,活动链接 aliyunfuwuqi.com/go/aliyun 活动链接如下图: 阿里云2核4G服务器优惠价格 轻量应用服务器2核2G4M带宽、60GB高效…

安装mysql8.0.36遇到的问题没有developer default 选项问题

安装mysql8.0.36的话没有developer default选项,直接选择customer就好了,点击next之后通过点击左边Available Products里面的号和中间一列的右箭头添加要安装的产品,最后会剩下6个 安装完成后默认是启动了,并且在电脑注册表注册了…

零基础-MySQL数据库的基本操作

①MYSQL数据库基本操作-DDL 1.DDL的解释 DDL(Data Definition Language),数据定义语言,包括以下内容: 对数据库的常用操作 对表结构的常用操作 修改表结构 2.对数据库的常用操作 功能SQL查看所有的数据库show d…

【leetcode热题】 二叉树的右视图

给定一个二叉树的 根节点 root,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。 示例 1: 输入: [1,2,3,null,5,null,4] 输出: [1,3,4]示例 2: 输入: [1,null,3] 输出: [1,3]示例 3: 输入: [] 输出: []解法一 题…

javase day10笔记

第十天课堂笔记 debug调试★★★ 步骤: 设置断点 - > 启动调试debug -> 单步运行 -> 观察参数 单步跳过f8: 向下执行语句,不进入方法内部单步跳入f7: 进入方法内部执行单步跳出shift f8: 跳出当前方法,到方法调用处跳转到光标所在的位置alt f9: 变量整合 变量 …

机器学习K-means算法

K-Means 算法(K-Means算法、K-Means 中心值计算、K-Means 距离计算公式、K-Means 算法迭代步骤、K-Means算法实例) 问题引入 给你如下两种图片,快读回答2个问题,问 图1 中有几类五谷杂粮?问 图2 中有几类五谷杂粮&…

AI大模型学习:理论基石、优化之道与应用革新

✨✨ 欢迎大家来访Srlua的博文(づ ̄3 ̄)づ╭❤~✨✨ 🌟🌟 欢迎各位亲爱的读者,感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢,在这里我会分享我的知识和经验。&am…

使用git+ssh访问github,避免下载资源失败

一、创建github账户之后,记住注册邮箱和账户名 我的邮箱:yuanyan23mails.ucas.ac.cn 账户名:thekingofjumpshoot 下边的相关位置需要用自己的邮箱和用户名替代 二、输入本地生成秘钥和公钥命令,并且生成公私钥对 ssh-keygen …

亚马逊云科技《生成式 AI 精英速成计划》

最近亚马逊云科技推出了「生成式AI精英速成计划」,获取包含:免费学习热门生成式AI课程、技能证书、人力主管的面试辅导、云计算国际认证、免费去往北美参加全球用户大会等~ 针对开发者和企业非技术专业人士,了解如何使用大模型平台…

Spring Bean加载优先级

当我们使用 ConditionalOnMissingBean / ConditionalOnBean注解去给某个 bean 注入赋予条件时,那在条件判断时我们需要确保条件判断过程所需的环境已准备好。 举个例子 下面的代码中有两个配置类,涉及两个 Bean 的注入 配置类 ConfigA 需要注入一个 A…

Uibot6.0 (RPA财务机器人师资培训第3天 )财务招聘信息抓取机器人案例实战

训练网站:泓江科技 (lessonplan.cn)https://laiye.lessonplan.cn/list/ec0f5080-e1de-11ee-a1d8-3f479df4d981https://laiye.lessonplan.cn/list/ec0f5080-e1de-11ee-a1d8-3f479df4d981https://laiye.lessonplan.cn/list/ec0f5080-e1de-11ee-a1d8-3f479df4d981(本博…