Linux进程地址空间详解

文章目录

    • 前言
    • 一、程序地址空间
    • 二、感受虚拟地址的存在
    • 三、进程地址空间
    • 四、程序从磁盘加载到内存的过程
      • 4.1 物理地址和虚拟地址的区别
    • 五、写时拷贝
      • 5.1 解释fork()函数有两个返回值

前言

  • 我们在学习C/C++的时候用到的地址是什么地址呢?虚拟地址?物理地址?
  • 本文就来寻找一下答案~

一、程序地址空间

  • 程序地址空间的空间布局图

在这里插入图片描述

  • 从上面的图我们可以看出,程序地址空间中存在一些相关的区域:正文代码,初始化数据,未初始化数据,堆,共享区,栈,命令行和环境变量,内核空间,除了内核空间,其他空间都属于用户空间,所占的空间大小是3G

二、感受虚拟地址的存在

  • 我们可以用fork进程创建一个子进程,然后再定义一个全局变量,然后父进程和子进程同时访问全局变量然后进行同时观察地址
#include<stdio.h>
#include<string.h>
#include<unistd.h>
#include<stdlib.h>
#include<sys/types.h>

int g_val = 100;

int main(){
  pid_t id = fork();
  if(id < 0){
    perror("fork");
    exit(-1);
  }
  else if(id == 0){
    // child
    printf("This is child[%d],%d:%p",getpid(), g_val, &g_val);
  }
  else{
    // parent
    printf("This is parent[%d],%d:%p",getpid(), g_val, &g_val);
  }
  sleep(1);

  return 0;
}
  • 可以观察到父进程和子进程的访问的地址和值是一样的,所以子进程和父进程共享同一个数据

在这里插入图片描述

  • 再来观察一个现象
#include<stdio.h>
#include<string.h>
#include<unistd.h>
#include<stdlib.h>
#include<sys/types.h>

int g_val = 50;


int main(){
  pid_t id = fork();
  if(id < 0){
    perror("fork");
  return 0;
}
else if(id == 0){
  g_val = 100;
    printf("child[%d]: %d : %p\n", getpid(), g_val, &g_val);
  }
  else{
    sleep(3);
    printf("parent[%d]: %d : %p\n", getpid(), g_val, &g_val);
  }
  sleep(1);
  return 0;
}
  • 我们发现,父子进程,输出地址是一致的,但是变量内容不一样!
  • 我们可以得出一个结论,这里所指的地址不可能是物理地址,因为同一个地址只能是同一个内容,不可能出现同一个地址存放两个不同的值
  • 其实这里的地址是虚拟地址,不是真正的物理地址

在这里插入图片描述

三、进程地址空间

  • 其实在每一个进程建立的时候,操作系统不仅会为进程创建一个PCB,同时还会为每一个进程创建一个进程地址空间。
  • 每一个进程都有自己独立的进程地址空间,那么这样系统中的进程地址空间就会非常多,操作系统就需要对这些进程地址空间进行管理和控制,而管理的本质就是先描述再组织,描述的意思就是为进程地址空间创建一个结构体。
  • 在Linux系统中,有一个结构体叫做:mm_struct,每一个进程都是相对独立,互不影响的,每一个进程中的PCBmm_struct都是相互独立的,这就是进程的独立性。

在这里插入图片描述


  • 进程地址空间中的结构和前面讲的程序地址空间的结构一样,其中都包含正文代码,初始化数据,未初始化数据,堆区,共享区和栈区,还有命令行参数和环境变量

  • 在实际中,每个区域都每一个区域都是由对应的startend来维护的,如果我们想改变对应区域的大小,我们可以通过设置对应区域的start和end进行修改即可,在每一个区域的start和end中会包含很多的地址,这个地址就是所谓的虚拟地址,不是物理地址,物理地址是存在于内存中的,不是存在进程地址空间的。

四、程序从磁盘加载到内存的过程

程序被编译但还没有被加载到内存时程序内部是否存在地址?

  • 代码被编译形成可执行程序之后是存在对应的地址的,也就是说程序中的每一段代码在程序中的位置已经确定,这个地址是代码在程序中的地址,与内存中的虚拟地址是没有任何关系的

程序被编译但还没有被加载到内存时程序内部是否存在区域?

  • 代码被编译成可执行程序之后,在可执行程序中是存在相关区域的,存在的区域有:正文代码,初始化数据区,未初始化数据区,命令行参数和环境变量,这时需要注意:并不存在栈区和堆区,栈区和堆区是要等程序加载到内存中才存在的

4.1 物理地址和虚拟地址的区别

  • 物理地址是在代码在真正的内存中存在的地址(位置)
  • 虚拟地址是指CPU直接能够访问到的地址,并不是相关代码在内存中的真实地址,这个虚拟地址的作用就是能够通过页表相关的映射关系转化成代码在内存中的物理地址
  • 因此,我们一旦有一个代码的虚拟地址还有页表的映射关系,其实就相当于我们有了代码在内存中的物理地址,虚拟地址和物理地址是通过页表建立联系的

在这里插入图片描述

  • 当一个进程运行起来的时候,每个进程都会分别创建PCB和mm_struct,每一个进程都独自拥有一个进程地址空间。
  • 页表是进程地址空间和物理内存之间存在的一个工具,主要作用就是负责利用其中虚拟地址和物理地址的映射关系实现虚拟地址和物理地址之间的相互转化,也就是说有了虚拟地址和页表,我就可以找到对应的物理地址,也就是相当于对应映射。

在这里插入图片描述

  • 上面的图就足矣说名问题,同一个变量,地址相同,其实是虚拟地址相同,内容不同其实是被映射到了不同的物理地址

五、写时拷贝

  • 写时拷贝是指当数据被修改的时候,系统会在内存中重新为该数据开辟一块新空间,将该数据原来的内存拷贝放到新空间,然后再在新空间对该数据进行修改

  • 在我们前面的感受虚拟地址的存在的时候知道,父子进程访问同一个数据出现两个结果是因为有虚拟地址的存在,那么我们可以近一步讨论一下这个问题

  • 当系统识别到子进程想要修改该数据的时候,系统会为子进程在内存的另一个地方开辟一块新的空间,然后将该数据原来的值拷贝放到新空间,然后再在新空间对数据进行修改,这个新空间就是该变量在内存中实际存在的物理地址空间,此时操作系统会更新子进程中的页表映射关系,其中改变的是页表中原先映射关系的物理地址,让原先的物理地址更新为更改后的物理地址,

  • 因此,我们会发现,父子进程的页表中对该变量的虚拟地址是一样的,但是在子进程对该数据进行修改之后,子进程的页表被重新更新,更新之后映射出的物理地址就是不一样的,此时父子进程访问的其实是两个不同的物理空间中的内容,所以结果就会出现父子进程访问同一个虚拟地址出现不同的结果

在只读的情况下:

在这里插入图片描述

在写入的时候,进行写时拷贝

在这里插入图片描述

5.1 解释fork()函数有两个返回值

  • pid_d id是属于父进程栈空间的变量,fork()函数内部return会被执行两次,return的本质就是将保存在寄存器上的值写入到接收返回值的变量中, 当id = fork();的时候,谁先返回,谁就要发生写时拷贝,所以,同一个变量,会有不同的内容,本质是因为这个变量的虚拟地址是一样的,但是会有不同的物理地址。

好了,本文就到这里,感谢大家的收看🌹🌹🌹

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/482829.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

全球首位AI程序员诞生,对程序员的影响分析

全球首位AI程序员诞生&#xff0c;对程序员的影响分析 《全球首位AI程序员诞生&#xff0c;对程序员的影响分析》方向一&#xff1a;AI程序员的优势分析方向二&#xff1a;AI程序员的局限性方向三&#xff1a;对程序员职业的影响方向四&#xff1a;未来展望 博主 默语带您 Go t…

Swagger常用注解

Tag 标注位置controller类 表示Controller类作用 Schema modeal层javaBean 描述模型及属性 Operation 描述方法作用

Docker入门到实践之环境配置

Docker入门到实践之环境配置 docker 环境安装 Ubuntu/Debian: sudo apt update sudo apt install docker.ioCentOS/RHEL: sudo yum install dockerArch Linux: sudo pacman -S docker如果未安装成功&#xff0c;或者env的path未设置成功&#xff0c;运行时会报错 Bash: Do…

Linux详细介绍

Linux操作系统介绍 Linux 是一种开源的类 Unix 操作系统&#xff0c;最初由 Linus Torvalds 在 1991 年创建。与其他操作系统不同&#xff0c;Linux 是一个基于内核的操作系统&#xff0c;其核心是 Linux 内核。Linux 内核是由程序员社区不断开发和改进的&#xff0c;它提供了…

Docker - 哲学 默认网络和 自定义网络 与 linux 网络类型 和 overlay2

默认网络&#xff1a;不指定 --nerwork 不指定 网络 run 一个容器时&#xff0c;会直接使用默认的网络桥接器 &#xff08;docker0&#xff09; 自定义网络&#xff1a;指定 --nerwork 让这两台容器互相通信 的前提 - 共享同一个网络 关于 ip addr 显示 ens160 储存驱动 ov…

基于Springboot的药品管理系统(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的药品管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&…

深度学习 线性神经网络(线性回归 从零开始实现)

介绍&#xff1a; 在线性神经网络中&#xff0c;线性回归是一种常见的任务&#xff0c;用于预测一个连续的数值输出。其目标是根据输入特征来拟合一个线性函数&#xff0c;使得预测值与真实值之间的误差最小化。 线性回归的数学表达式为&#xff1a; y w1x1 w2x2 ... wnxn …

stm32使用定时器实现PWM与呼吸灯

PWM介绍 STM32F103C8T6 PWM 资源&#xff1a; 高级定时器&#xff08; TIM1 &#xff09;&#xff1a; 7 路 通用定时器&#xff08; TIM2~TIM4 &#xff09;&#xff1a;各 4 路 例如定时器2 PWM 输出模式&#xff1a; PWM 模式 1 &#xff1a;在 向上计数 时&#xff0…

网络安全顶会——NDSS '24 论文清单、摘要(上)

1、50 Shades of Support: A Device-Centric Analysis of Android Security Updates Android是迄今为止最受欢迎的操作系统&#xff0c;拥有超过30亿活跃移动设备。与任何软件一样&#xff0c;在Android设备上发现漏洞并及时应用补丁都至关重要。Android开源项目已经开始努力通…

<REAL-TIME TRAFFIC OBJECT DETCTION FOR AUTONOMOUS DRIVING>论文阅读

Abstract 随着计算机视觉的最新进展&#xff0c;自动驾驶迟早成为现代社会的一部分&#xff0c;然而&#xff0c;仍有大量的问题需要解决。尽管现代计算机视觉技术展现了优越的性能&#xff0c;他们倾向于将精度优先于效率&#xff0c;这是实时应用的一个重要方面。大型目标检测…

modelsim与quartus联合仿真ROM读不出数据

modelsim与quartus联合仿真ROM没有数据被读出&#xff0c;很是纳闷。 原因&#xff1a;hex或者mif文件放的不对&#xff0c;放在与db放在同一个文件夹下。modelsim在这个目录查找mif文件或hex。 这是我遇到的问题。当然可能还有其他的问题&#xff1a; 1、mif文件的格式不对&a…

会员中心微服务

文章目录 1.环境配置1.创建会员中心模块2.检查父子模块的pom.xml1.父模块注意&#xff1a;如果父模块中的依赖显示not found&#xff0c;原因是子模块并没有引用&#xff0c;不用在意 2.子模块 3.pom.xml 引入相关依赖&#xff08;别忘记刷新maven&#xff09;4.application.ym…

机械臂学习实验篇

一.前言 大家好呀&#xff0c;本小节开始我将记录一下我使用的机械臂所完成的项目过程&#xff0c;最终计划是在ros小车组装上机械臂然后进行物体的投掷&#xff0c;如果有同样目标的伙伴可以私信我&#xff0c;大家一起探讨。好了&#xff0c;话不多说&#xff0c;马上开始…

Head First Design Patterns -模板方法模式

什么是模板方法模式 在一个方法中定义一个算法的骨架&#xff0c;而把一些步骤延迟到子类。模板方法使得子类可以在不改变算法结构的情况下&#xff0c;重新定义算法的某些步骤。 这些算法步骤中的一个或者多个被定义为抽象的&#xff0c;由子类实现。 类图 代码 书中用泡茶和…

pytest之yaml格式测试用例读写封装

pytest之yaml格式测试用例读写封装 pytest之parametrize&#xff08;&#xff09;实现数据驱动YAML格式测试用例读/写/清除/封装结构类型Maps类型数组类型 pytestparametrizeyamltest_api.pyget_token.yaml pytest之parametrize&#xff08;&#xff09;实现数据驱动 pytest.ma…

在Sequence中缓存Niagara粒子轨道

当Sequence中粒子特效较多时&#xff0c;播放检查起来较为麻烦&#xff0c;而使用Niagara缓存功能可将粒子特效方便的缓存起来&#xff0c;并且还可以更改播放速度与正反播放方向&#xff0c;便于修改。 1.使用Niagara缓存需要先在插件里打开NiagaraSimCaching 2.创建一个常…

JVM堆(虚拟机堆)的分区

JVM堆分为&#xff1a;新生代(young)和老年代(old) 新生代分为&#xff1a;伊甸园(eden)和幸存区(survivor) 幸存区分为&#xff1a;from区和to区 from和to通常大小相等 伊甸园 eden&#xff0c;最初对象都分配到这里&#xff0c;与幸存区合称新生代幸存区survivor,当eden内存…

CSS3 中的盒模型:标准与IE盒模型的差异

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

鸿蒙开发实战:网络请求库【axios】

简介 [Axios] &#xff0c;是一个基于 promise 的网络请求库&#xff0c;可以运行 node.js 和浏览器中。本库基于[Axios]原库v1.3.4版本进行适配&#xff0c;使其可以运行在 OpenHarmony&#xff0c;并沿用其现有用法和特性。 http 请求Promise APIrequest 和 response 拦截器…