MCP4725介绍和STM32模拟IC2驱动

一.MCP4725

简单总结为下面几个特点。
1路DAC输出
12位分辨率
I2C 接口(标准,快速,高速支持)
供电电压2.7-5.5
内部EEPROM存储设置
I2C地址可配置(A0)(A1、A2内置,默认为‘00’)
在这里插入图片描述

二.硬件设计

MCP4725的管脚定义如图所示,比较简单
在这里插入图片描述
官方的电路图如下
在这里插入图片描述

一般上拉电阻选择10K就可以了,后级的比较器看项目需要,可以更换为同相放大器。

三.软件设计

MCP4725的输出电压由下面的公式计算得出
在这里插入图片描述
可以理解为VDD除以4096份,我们想要输出相对应的电压只要计算好相对应的份数就可以了。
在这里插入图片描述
MCP4725采用I2C接口。写命令如图
在这里插入图片描述
MCP4725带一个EEPROM,可以存储上一次输出的电压指令。
快速模式写DAC寄存器
在这里插入图片描述
其实第一个字节一般是固定的,如果I2C只连接了一个MCP4725那就是写入0XC2。第二个字节关断模式一般选择为00,接下来就是想要输出的电压分数,比如参考电压为5V,想要输出2.5V就是2048份,也就是0X800。
在这里插入图片描述接下来的写EEPROM和读EEPROM也是一样的操作。就不详细写了
在这里插入图片描述
在这里插入图片描述

代码
H文件

#ifndef __MCP4725_H
#define __mcp4725_H
#include "myiic.h"   


#define VREF_5V      5000

void MCP4725_Init(void);
void MCP4725_WriteData_Digital(u16 data);
void MCP4725_WriteData_Voltage(u16 Vout);

#endif

C文件

#include "MCP4725.h" 
#include "delay.h"


//初始化IIC接口
void MCP4725_Init(void)
{
	IIC_Init();
}

//使用快速模式写命令写DAC寄存器
void MCP4725_WriteData_Voltage(u16 Vout)   //电压单位mV
{
  u8 temp;
	u16 Dn;
	Dn = ( 4096 * Vout) / VREF_5V; //这里的VREF_5V宏定义为5000
	temp = (0x0F00 & Dn) >> 8;  //12位数据。0000XXXX XXXXXXXX 
	IIC_Start();
	IIC_Send_Byte(0XC2);      //器件寻址,器件代吗:1100; 地址位A2,A1,A0为 0 , 0 , 1;-> 1100 0010
    IIC_Wait_Ack();	 
    IIC_Send_Byte(temp); 	  //将高8位送到DAC寄存器
    IIC_Wait_Ack();	 
    IIC_Send_Byte(Dn);        //将低8位送到DAC寄存器
	IIC_Wait_Ack();	
    IIC_Stop();//产生一个停止条件  	
	delay_ms(10);	
}
 
void MCP4725_WriteData_Digital(u16 data)   //12位数字量
{
    u8 data_H=0,data_L=0;
	data_H = ( 0x0F00 & data) >> 8;
	data_L = 0X00FF & data ;
	IIC_Start();
	IIC_Send_Byte(0XC0);      //器件寻址,器件代吗:1100; 地址位A2,A1,A0为 0 , 0 , 0;-> 1100 0010
    IIC_Wait_Ack();	 
    IIC_Send_Byte(data_H); 	
    IIC_Wait_Ack();	 
    IIC_Send_Byte(data_L);
	IIC_Wait_Ack();	
    IIC_Stop();//产生一个停止条件  	
	delay_ms(10);	
}

I2C文件

#ifndef __MYIIC_H
#define __MYIIC_H
#include "sys.h"

//IO方向设置
// 
//#define SDA_IN()  {GPIOL->CRH&=0XFF0FFFFF;GPIOA->CRL|=(u32)8<<12;}    //PA5
//#define SDA_OUT() {GPIOL->CRH&=0XFF0FFFFF;GPIOA->CRL|=(u32)3<<12;}
 

//IO操作函数	 
#define IIC_SCL    PAout(4) //SCL
#define IIC_SDA    PAout(5) //SDA	 
#define READ_SDA   PAin(5)  //输入SDA 

//IIC所有操作函数
void IIC_Init(void);                //初始化IIC的IO口				 
void IIC_Start(void);				//发送IIC开始信号
void IIC_Stop(void);	  			//发送IIC停止信号
void IIC_Send_Byte(u8 txd);			//IIC发送一个字节
u8 IIC_Read_Byte(unsigned char ack);//IIC读取一个字节
u8 IIC_Wait_Ack(void); 				//IIC等待ACK信号
void IIC_Ack(void);			        //IIC发送ACK信号
void IIC_NAck(void);				//IIC不发送ACK信号

void SDA_IN(void);
void SDA_OUT(void);

void IIC_Write_One_Byte(u8 daddr,u8 addr,u8 data);
u8 IIC_Read_One_Byte(u8 daddr,u8 addr);	  
#endif
#include "myiic.h"
#include "delay.h"

//初始化IIC
void IIC_Init(void)
{					     
	GPIO_InitTypeDef GPIO_InitStructure;
	RCC_APB2PeriphClockCmd(	RCC_APB2Periph_GPIOA, ENABLE );	//使能GPIOA时钟
	   
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4|GPIO_Pin_5;         //PA4 ->SCL;  PA5->SDA
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP ;   //推挽输出
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	GPIO_SetBits(GPIOA,GPIO_Pin_4|GPIO_Pin_5); 	//PA4,PA5 输出高,因为IIC空闲状态都是高电平
}

//SDA设置为输入
void SDA_IN (void)
{
    GPIO_InitTypeDef GPIO_InitStructure;
    RCC_APB2PeriphClockCmd(	RCC_APB2Periph_GPIOA, ENABLE );	
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; 
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; 
    GPIO_Init(GPIOA, &GPIO_InitStructure);
}

//SDA设置为输出
void SDA_OUT(void)
{ 
	GPIO_InitTypeDef GPIO_InitStructure;
    RCC_APB2PeriphClockCmd(	RCC_APB2Periph_GPIOA, ENABLE );	
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; 
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP ; 
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);
}
//产生IIC起始信号
void IIC_Start(void)
{
	SDA_OUT();     //sda线设置为输出
	IIC_SDA=1;	  	  
	IIC_SCL=1;
	delay_us(10);
 	IIC_SDA=0;     //START:when CLK is high,DATA change form high to low 
	delay_us(10);
	IIC_SCL=0;     //钳住I2C总线,准备发送或接收数据 
}	  
//产生IIC停止信号
void IIC_Stop(void)
{
	SDA_OUT();//sda线输出
	IIC_SCL=0;
	IIC_SDA=0;//STOP:when CLK is high DATA change form low to high
 	delay_us(10);
	IIC_SCL=1; 
	IIC_SDA=1;//发送I2C总线结束信号
	delay_us(10);							   	
}
//等待应答信号到来
//返回值:1,接收应答失败
//        0,接收应答成功
u8 IIC_Wait_Ack(void)
{
	u8 ucErrTime=0;
	SDA_IN();      //SDA设置为输入  
	IIC_SDA=1;delay_us(2);	   
	IIC_SCL=1;delay_us(2);	 
	while(READ_SDA)
	{
		ucErrTime++;
		if(ucErrTime>250)
		{
			IIC_Stop();
			return 1;
		}
	}
	IIC_SCL=0;//时钟输出0 	   
	return 0;  
} 
//产生ACK应答
void IIC_Ack(void)
{
	IIC_SCL=0;
	SDA_OUT();
	IIC_SDA=0;
	delay_us(5);
	IIC_SCL=1;
	delay_us(5);
	IIC_SCL=0;
}
//不产生ACK应答		    
void IIC_NAck(void)
{
	IIC_SCL=0;
	SDA_OUT();
	IIC_SDA=1;
	delay_us(5);
	IIC_SCL=1;
	delay_us(5);
	IIC_SCL=0;
}					 				     
//IIC发送一个字节
//返回从机有无应答
//1,有应答
//0,无应答			  
void IIC_Send_Byte(u8 txd)
{                        
    u8 t;   
	SDA_OUT(); 	    
    IIC_SCL=0;//拉低时钟开始数据传输
    for(t=0;t<8;t++)    //开始准备信号线
    {              
        //IIC_SDA=(txd&0x80)>>7;
		if((txd&0x80)>>7)
			IIC_SDA=1;
		else
			IIC_SDA=0;
		txd<<=1; 	  
		delay_us(5);   //对TEA5767这三个延时都是必须的
		IIC_SCL=1;
		delay_us(5); 
		IIC_SCL=0;	
		delay_us(5);
    }	 
} 	    
//读1个字节,ack=1时,发送ACK,ack=0,发送nACK   
u8 IIC_Read_Byte(unsigned char ack)
{
	unsigned char i,receive=0;
	SDA_IN();//SDA设置为输入
    for(i=0;i<8;i++ )
	{
        IIC_SCL=0; 
        delay_us(5);
		IIC_SCL=1;
        receive<<=1;
        if(READ_SDA)receive++;   
		delay_us(4); 
    }					 
    if (!ack)
        IIC_NAck();//发送nACK
    else
        IIC_Ack(); //发送ACK   
    return receive;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/48275.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

NAT详解(网络地址转换)

一句话说清楚它是干什么的&#xff1a; 网络地址转换&#xff1a;是指通过专用网络地址转换为公用地址&#xff0c;从而对外隐藏内部管理的IP地址&#xff0c;它使得整个专用网只需要一个全球IP就可以访问互联网&#xff0c;由于专用网IP地址是可以重用的&#xff0c;所以NAT大…

undefined reference to `__android_log_print‘

报错描述 在 Android NDK 相关的工程构建中&#xff0c;出现报错&#xff1a; undefined reference to __android_log_print’ 翻译成 QM 能理解的话&#xff1a; 在链接阶段&#xff0c; 遇到一个需要被链接的符号 __android_log_print, 但是没有在给出的依赖库里面找到 __an…

HCIP——OSPF优化、拓展配置及选路规则

OSPF优化以及拓展配置 一、OSPF的优化1、汇总域间路由汇总域外路由汇总 2、特殊区域末梢区域完全末梢区域 NSSA非完全末梢区域Totally NSSA(完全的非完全末梢区域) 二、OSPF的拓展配置1、手工认证2、加快收敛3、沉默接口缺省路由 4、路由过滤5、路由控制5.1 修改优先级5.2 修改…

Jenkins从配置到实战(一) - 实现C/C++项目自动化构建

前言 本文章主要介绍了&#xff0c;如何去安装和部署Jenkins&#xff0c;并实现自动拉取项目代码&#xff0c;自动化编译流程。 网站 官网中文网站 下载安装 可以下载这个 安装jenkins前先安装java yum search java|grep jdkyum install java-1.8.0-openjdk 安装jenkins j…

《基于STM32的红外避障小车》

文章目录 前言1、项目简介2、硬件准备3 设计图4 各个模块介绍4.1 主控芯片STM32F103VET6介绍4.2 L298N直流电机驱动模块模块介绍模块原理 4.3 红外传感器 5 具体连接6 效果展示及改进建议实物展示&#xff1a;改进建议 7 源码展示bsp_exti.cbsp_exti.hbsp_led.cbsp_led.hbsp_l2…

简单分享婚宴预订小程序怎么做

婚宴预订小程序需要具备一些功能&#xff0c;通过这些功能&#xff0c;新人可以更方便地选择婚宴场地、预订服务&#xff0c;并且更好地规划自己的婚礼。 1. 场地浏览与选择 婚宴预订小程序可以展示多个婚宴场地的照片和详细信息&#xff0c;包括容纳人数、场地设施、价格等。…

three.js入门二:相机的zoom参数

环境&#xff1a; threejs&#xff1a;129 &#xff08;在浏览器的控制台下输入&#xff1a; window.__THREE__即可查看版本&#xff09;vscodewindowedge 透视相机或正交相机都有一个zoom参数&#xff0c;它可以用来将相机排到的内容在canvas上缩放显示。 要点&#xff1a;…

ClickHouse(一):ClickHouse介绍及OLAP场景特征

目录 1. ClickHouse与其特性 ​​​​​​​2. 什么是ClickHouse ​​​​​​​3. OLAP场景的特征 进入正文前&#xff0c;感谢宝子们订阅专题、点赞、评论、收藏&#xff01;关注IT贫道&#xff0c;获取高质量博客内容&#xff01; ​​​​​​​1. ClickHouse与其特性 …

SpringBoot使用Redis对用户IP进行接口限流

使用接口限流的主要目的在于提高系统的稳定性&#xff0c;防止接口被恶意打击&#xff08;短时间内大量请求&#xff09;。 一、创建限流注解 引入redis依赖 <!--redis--><dependency><groupId>org.springframework.boot</groupId><artifactId&g…

【计网】一起聊聊TCP的粘包拆包问题吧

文章目录 1、介绍2、为什么会出现粘包/拆包问题2.1、TCP协议2.2、粘包问题2.3、拆包问题 3、粘包/拆包场景4、解决方案4.1、固定长度的数据包4.2、特殊字符或标记4.3、消息头 5、为什么UDP没有粘包/拆包问题 1、介绍 在TCP中&#xff0c;粘包和拆包问题是十分常见的&#xff0…

Vue3 Radio单选切换展示不同内容

Vue3 Radio单选框切换展示不同内容 环境&#xff1a;vue3tsviteelement plus 技巧&#xff1a;v-if&#xff0c;v-show的使用 实现功能&#xff1a;点击单选框展示不同的输入框 效果实现前的代码&#xff1a; <template><div class"home"><el-row …

【Docker】Consul的容器服务更新与发现

目录 一、Consul二、什么是服务注册与发现1.2什么是consul1.3consul提供的一些关键特性 二、Consul部署2.1环境配置2.2Consul服务器配置1. 建立 Consul 服务2. 查看集群信息3. 通过 http api 获取集群信息 2.3 registrator服务器配置1. 安装 Gliderlabs/Registrator2. 测试服务…

【多模态】17、CORA | 将 CLIP 使用到开集目标检测

文章目录 一、背景二、方法2.1 总体结构2.2 region prompting2.3 anchor pre-matching 三、效果 论文&#xff1a;CORA: Adapting CLIP for Open-Vocabulary Detection with Region Prompting and Anchor Pre-Matching 代码&#xff1a;https://github.com/tgxs002/CORA 出处…

JGJ46-2005施工现场临时用电安全技术规范

为贯彻国家安全生产的法律和法规&#xff0c;保障施工现场用电安全&#xff0c;防止触电和电气火灾事故发生&#xff0c;促进建设事业发展&#xff0c;制定本规范。 本规范适用于新建、改建和扩建的工业与民用建筑和市政基础设施施工现场临时用电工程中的电源中性点直接接地的…

【SpringCloud Alibaba】(四)使用 Feign 实现服务调用的负载均衡

在上一文中&#xff0c;我们实现了服务的自动注册与发现功能。但是还存在一个很明显的问题&#xff1a;如果用户微服务和商品微服务在服务器上部署多份的话&#xff0c;之前的程序无法实现服务调用的负载均衡功能。 本文就带着大家一起实现服务调用的负载均衡功能 1. 负载均衡…

实用便捷!一站式BI系统推荐

在企业数字化转型过程中&#xff0c;BI系统可以建立业务、数据的双驱引擎&#xff0c;形成业务、数据的互补作用&#xff0c;通过建立数字化技术架构&#xff0c;明确企业的战略定位和业务目标&#xff0c;从而支撑实现这个目标。而一站式BI系统&#xff0c;则是指可以轻松从数…

数据结构:顺序表(C实现)

个人主页 水月梦镜花 个人专栏 C语言 &#xff0c;数据结构 文章目录 一、顺序表二、实现思路1.存储结构2.初始化顺序表(SeqListInit)3.销毁顺序表(SeqListDestroty)4.打印顺序表(SeqListPrint)5.顺序表尾插(SeqListPushBack)and检查容量(SeqListCheckCapacity)6.顺序表头插(Se…

Excel 两列数据中相同的数据进行同行显示

一、要求 假设您有两个列&#xff0c;分别是A列和B列&#xff0c;需要在C列中找出A列对应的B列的值。 二、方案 方法1&#xff1a;寻常思路 凸显重复项对A列单独进行筛选–按颜色进行排序&#xff0c;然后升序对B列重复上述操作即可 方法2&#xff1a;两个公式 VLOOKUP 纵向查找…

Python计算统计分析MSE 、RMSE、MAE、R2

1、平均绝对误差 (MAE)Mean Absolute Error&#xff0c;是绝对误差的平均值&#xff0c;能更好地反映预测值误差的实际情况。范围[0,∞)&#xff0c;当预测值与真实值完全吻合时等于0&#xff0c;即完美模型&#xff1b;误差越大&#xff0c;该值越大。 2、均方误差 MSE(mean…

VBA技术资料MF34:检查Excel自动筛选是否打开

【分享成果&#xff0c;随喜正能量】聪明人&#xff0c;抬人不抬杠&#xff1b;傻子&#xff0c;抬杠不抬人。聪明人&#xff0c;把别人抬得很高&#xff0c;别人高兴、舒服了&#xff0c;看你顺眼了&#xff0c;自然就愿意帮你&#xff01;而傻人呢&#xff1f;不分青红皂白&a…