EI级!高创新原创未发表!VMD-TCN-BiGRU-MATT变分模态分解卷积神经网络双向门控循环单元融合多头注意力机制多变量时间序列预测(Matlab)

EI级!高创新原创未发表!VMD-TCN-BiGRU-MATT变分模态分解卷积神经网络双向门控循环单元融合多头注意力机制多变量时间序列预测(Matlab)

目录

    • EI级!高创新原创未发表!VMD-TCN-BiGRU-MATT变分模态分解卷积神经网络双向门控循环单元融合多头注意力机制多变量时间序列预测(Matlab)
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现VMD-TCN-BiGRU-MATT变分模态分解结合卷积神经网络双向门控循环单元融合多头注意力机制多变量时间序列预测;
2.运行环境为Matlab2023及以上;
3.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
4.data为数据集,main1-VMD.m、main2-VMD-TCN-BiGRU-MATT.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
VMD-TCN-BiGRU-MATT模型是一种结合了变分模态分解(VMD)、时间卷积神经网络(TCN)、双向门控循环单元(BiGRU)以及多头注意力机制(MATT)的多变量时间序列预测模型。该模型旨在充分利用各种技术的优势,以提高时间序列预测的准确性和稳定性。

首先,VMD技术用于对原始时间序列数据进行预处理。通过VMD,可以将复杂的时间序列信号分解为若干个模态分量,从而提取出原始数据中的有用信息和特征。这有助于降低数据的复杂性,并使得后续的特征提取和预测过程更加高效。

接下来,TCN用于进一步提取时间序列数据中的局部特征。TCN具有扩张因果卷积结构,能够捕捉序列中的长期依赖关系,并通过卷积操作提取出重要的局部特征。这些特征对于后续的预测过程至关重要。

然后,BiGRU网络被引入以处理序列数据中的短期和长期依赖关系。BiGRU是一种具有记忆单元的递归神经网络,能够充分利用序列数据的时序信息。通过将TCN提取的特征输入到BiGRU网络中,可以进一步提高模型的预测能力。

最后,多头注意力机制(MATT)被整合到模型中,以进一步提高预测精度。MATT允许模型对序列的不同部分进行注意力运算,从而更准确地捕捉关键信息。通过将独立的注意力输出串联起来并线性地转化为预期维度,MATT能够帮助模型更好地理解输入序列的复杂结构和依赖关系。

综上所述,VMD-TCN-BiGRU-MATT模型通过结合VMD、TCN、BiGRU和MATT等多种技术,实现了对多变量时间序列的有效预测。该模型能够充分利用各种技术的优势,提高预测精度和稳定性,对于处理复杂时间序列数据具有重要的应用价值。在实际应用中,可以根据具体的数据和任务需求对该模型进行进一步的优化和调整。

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现VMD-TCN-BiGRU-MATT变分模态分解结合卷积神经网络双向门控循环单元融合多头注意力机制多变量时间序列预测



%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res =xlsread('data.xlsx');

%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例

num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

f_ = size(P_train, 1);                  % 输入特征维度

%%  数据归一化
layer = sequenceInputLayer(f_,Normalization="rescale-symmetric",Name="input");
lgraph = layerGraph(layer);

outputName = layer.Name;

for i = 1:numBlocks
    dilationFactor = 2^(i-1);
    
    layers = [
        convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal",Name="conv1_"+i)
        layerNormalizationLayer
        dropoutLayer(dropoutFactor) 
        % spatialDropoutLayer(dropoutFactor)
        convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal")
        layerNormalizationLayer
        reluLayer
        dropoutLayer(dropoutFactor) 
        additionLayer(2,Name="add_"+i)];

    % Add and connect layers.
    lgraph = addLayers(lgraph,layers);
    lgraph = connectLayers(lgraph,outputName,"conv1_"+i);

    % Skip connection.
    if i == 1
        % Include convolution in first skip connection.
        layer = convolution1dLayer(1,numFilters,Name="convSkip");

        lgraph = addLayers(lgraph,layer);
        lgraph = connectLayers(lgraph,outputName,"convSkip");
        lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");
    else
        lgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");
    end
    
    % Update layer output name.
    outputName = "add_" + i;
end


tempLayers = flattenLayer("Name","flatten");
lgraph = addLayers(lgraph,tempLayers);

参考资料

[1] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/124571691

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/482415.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

最长公共子序列详解:状态表示的两种方法

本题链接&#xff1a;897. 最长公共子序列 - AcWing题库 给定两个长度分别为 N 和 M 的字符串 A 和 B&#xff0c;求既是 A 的子序列又是 B 的子序列的字符串长度最长是多少。 本题分析如下图&#xff0c;对于状态可以分两种情况讨论 #include<iostream> #include<cst…

递归和递推的区别

目录 1、递推 2、递归 3、结言 递归 递推 1、递推 递推就是说从初值出发后一直运算到所需的结果。 ——从已知到未知。&#xff08;从小到大&#xff09; 举一个简单的例子&#xff1a; 每天能学习一个小时的编程&#xff0c;那么一个月之后可以学到三十小时的编程知识。…

mysql面试,事务四大特性,mvcc版本控制,3个重要日志,索引结构,索引失效,innodb引擎执行流程,主从复制,锁,page页

大纲 事务4大特性 https://blog.csdn.net/king_zzzzz/article/details/136699546 Mvcc多版本控制 https://blog.csdn.net/king_zzzzz/article/details/136699546 3个重要日志 https://blog.csdn.net/king_zzzzz/article/details/136868343 索引 mysql 索引&#xff08;…

MySQL面试题--最全面-索引

目录 一、索引 1.MySQL是如何让实现的索引机制&#xff1f; 2.InnoDB索引与MyISAM索引实现的区别是什么&#xff1f; 3.一个表中如果没有创建索引&#xff0c;那么还会创建B树吗&#xff1f; 4.说一下B树索引实现原理&#xff08;数据结构&#xff09; 5.聚簇索引与非聚簇…

【数据挖掘】实验4:数据探索

实验4&#xff1a;数据探索 一&#xff1a;实验目的与要求 1&#xff1a;熟悉和掌握数据探索&#xff0c;学习数据质量分类、数据特征分析和R语言的主要数据探索函数。 二&#xff1a;实验内容 1&#xff1a;数据质量分析 2&#xff1a;统计量分析 3&#xff1a;贡献度分析…

2024.3.23

1、使用手动连接&#xff0c;将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中&#xff0c;在自定义的槽函数中调用关闭函数将登录按钮使用qt5版本的连接到自定义的槽函数中&#xff0c;在槽函数中判断ui界面上输入的账号是否为"admin"&#xff0c;密码是否…

Linux :环境基础开发工具

目录: 1. Linux 软件包管理器 yum 1. 什么是软件包 2. 查看软件包 3. 如何安装软件 4. 如何卸载软件 2. Linux开发工具 1. Linux编辑器-vim的基本概念 2. vim使用 3. vim的基本操作 4. vim正常模式命令集 5. vim末行模式命令集 6. 简单vim配置 3. Linux编译器-gcc/…

【Entity Framework】 EF中DbContext类详解

【Entity Framework】 EF中DbContext类详解 一、概述 DbContext类是实体框架的重要组成部分。它是应用域或实例类与数据库交互的桥梁。 从上图可以看出DbContext是负责与数据交互作为对象的主要类。DbContext负责以下活动&#xff1a; EntitySet&#xff1a;DbContext包含…

体育竞赛成绩管理系统设计与实现|jsp+ Mysql+Java+ B/S结构(可运行源码+数据库+设计文档)

本项目包含可运行源码数据库LW&#xff0c;文末可获取本项目的所有资料。 推荐阅读100套最新项目 最新ssmjava项目文档视频演示可运行源码分享 最新jspjava项目文档视频演示可运行源码分享 最新Spring Boot项目文档视频演示可运行源码分享 2024年56套包含java&#xff0c;…

什么是皮尔逊、斯佩尔曼和肯德尔相关性系数

代码实现&#xff1a; import numpy as np from scipy.stats import pearsonr, spearmanr,kendalltau #什么是皮尔逊、斯佩尔曼和肯德尔相关性系数 # 生成示例数据 x np.array([1, 2, 3, 4, 5]) y np.array([5, 6, 7, 8, 7])# 计算皮尔逊相关系数 pearson_coef, pearson_p …

计算机考研|几所性价比巨高的院校!必看

✅厦门大学 (985)&#xff1a;不歧视双非&#xff0c;全靠实力&#xff0c;校园环境还贼美 ✅重庆大学 (985)&#xff1a;信息公开透明&#xff0c;复试抽签 ✅吉林大学 (985)&#xff1a;不歧视双非&#xff0c;但信息公布比较慢&#xff0c;因为想把复复试的人都录取上 ✅…

仿牛客网开发笔记

用到Spring的 一些 核心技术 1 Spring Framework Spring Core IOC 、AOP > 管理对象的一种思想 IOC > 面向对象的管理思想 AOP > 面向切面的管理思想Spring Data Access 》访问数据库的功能 Transaction、Spring MyBatis Transaction 》管理事务Spring MyB…

Centos上安装Harbor并使用

harbor的安装与使用 Harbor介绍安装前的准备工作为Harbor自签发证书安装Harbor安装docker开启包转发功能和修改内核参数安装harbor扩展 Harbor 图像化界面使用说明测试使用harbor私有镜像仓库从harbor仓库下载镜像 Harbor介绍 容器应用的开发和运行离不开可靠的 镜像管理&…

探索超净实验室:高纯电子级PFA洗瓶特氟龙材质清洗瓶的特性

PFA洗瓶&#xff0c;实验中常用的清洗工具之一&#xff0c;是一个带有弯曲管状喷嘴的柔性瓶子&#xff0c;因此可以用手挤压瓶身以产生压力&#xff0c;迫使瓶内液体通过塑料管以单滴或窄流的形式流到需要清洁的表面。 ​ 由于需要多次挤压&#xff0c;瓶体要有良好的回弹性和…

动态规划——斐波那契问题(Java)

目录 什么是动态规划&#xff1f; 练习 练习1&#xff1a;斐波那契数 练习2&#xff1a;三步问题 练习3&#xff1a;使用最小花费爬楼梯 练习4&#xff1a;解码方法 什么是动态规划&#xff1f; 动态规划&#xff08;Dynamic Programming&#xff0c;DP&#xff09;&…

关于VS项目无法找到源文件或者,代码更改项目却不更改的问题

Studio\workShop\......\obj\Debug\net6.0\GraduationProjectEX.Shared.AssemblyInfo.cs”。 像上面这个&#xff0c;说无法找到源文件&#xff0c;然后我去目录找&#xff0c;果然是没有的&#xff0c;我的是依赖方面的错误&#xff0c;莫名其妙&#xff0c;因为我更改了项目…

超快的 AI 实时语音转文字,比 OpenAI 的 Whisper 快4倍 -- 开源项目 Faster Whisper

faster-whisper 这个项目是基于 OpenAI whisper 的模型&#xff0c;在上面的一个重写。 使用的是 CTranslate2 的这样的一个库&#xff0c;CTranslate2 是用于 Transformer 模型的一个快速推理引擎。 在相同精度的情况下&#xff0c;faster-whisper 的速度比 OpenAI whisper …

鸿蒙Harmony应用开发—ArkTS-if/else:条件渲染

ArkTS提供了渲染控制的能力。条件渲染可根据应用的不同状态&#xff0c;使用if、else和else if渲染对应状态下的UI内容。 说明&#xff1a; 从API version 9开始&#xff0c;该接口支持在ArkTS卡片中使用。 使用规则 支持if、else和else if语句。 if、else if后跟随的条件语句…

心脏滴血漏洞详解(CVE-2014-0160)

参考链接&#xff1a;心脏滴血漏洞利用&#xff08;CVE-2014-0160&#xff09;_cve-2014-0160漏洞禁用443端口-CSDN博客 目录 OpenSSL简介 漏洞原理 影响版本 漏洞复现 漏洞利用 修复方案 OpenSSL简介 OpenSSL是一个开放源代码的软件库包&#xff0c;提供了一组加密和认…

【leetcode热题】 位1的个数

编写一个函数&#xff0c;输入是一个无符号整数&#xff08;以二进制串的形式&#xff09;&#xff0c;返回其二进制表达式中数字位数为 1 的个数&#xff08;也被称为汉明重量&#xff09;。 提示&#xff1a; 请注意&#xff0c;在某些语言&#xff08;如 Java&#xff09;中…