【机器学习之---统计】统计学基础概念

every blog every motto: You can do more than you think.
https://blog.csdn.net/weixin_39190382?type=blog

0. 前言

统计学基础

1. 频率派

频率学派(传统学派)认为样本信息来自总体,通过对样本信息的研究可以合理地推断和估计总体信息,并且随着样本的增加,推断结果会更加准确。代表性人物是费希尔(R. A. Fisher, 1890-1962)。

Image

频率学派的核心思想是基于大样本理论,将概率看作频率的极限,以样本观测值的频率为基础进行推断。频率学派注重数据的重复抽样和统计量的性质,比如点估计、置信区间和假设检验等。它强调的是通过样本信息来推断总体参数,并将此过程视为客观的、可重复的。

2. 贝叶斯学派

贝叶斯学派源于英国学者贝叶斯(T. Bayes, 1702-1761)在1763年发表的著名论文《论有关机遇问题的求解》。贝叶斯学派认为任何一个未知量都可以看作是随机的,应该用一个概率分布去描述未知参数,而不是频率派认为的固定值。

image-20240312102456751

贝叶斯学派的核心思想是先验信息与后验信息相结合,通过贝叶斯公式将先验信息与样本数据进行结合,得到后验分布,并以此作为对未知参数的推断。贝叶斯学派强调主观先验信息的引入,因此不同人可能会有不同的先验分布,从而导致不同的推断结果。贝叶斯学派注重个体的主观判断和背景信息,更加灵活和主观。

image-20240312101440834

先验分布: 贝叶斯学派使用先验分布来描述对未知参数的主观先验知识。先验分布可以是任意形式的分布函数,它反映了我们在进行观测之前对参数的先验认识。例如,在研究某产品的平均寿命时,我们可以使用指数分布作为平均寿命的先验分布。

img

后验分布: 贝叶斯学派使用后验分布来描述在观测数据之后对未知参数的更新认识。后验分布是通过将先验分布与观测数据相结合,应用贝叶斯公式计算得到的。例如,在进行文本分类时,我们可以使用贝叶斯定理计算每个类别的后验概率,从而将文本归入最可能的类别中。

img

3. 案例

3.1 频率派

比如我们想了解一个公交站在下一个单位时间内候车的人数情况。

常识告诉我们候车的人数分布应该是符合泊松分布的:

image-20240312105531055

也就是说单位时间内有k个人候车的概率,我们可以通过带入这个公式直接计算出来。

但是,我们面对的问题就是我们虽然知道这个分布公式,但其中有个未知参数λc。

所以,我们需要做的就是在已知分布的情况下如何去估计分布中未知的参数λc。

参数估计的经典方法认为未知参数λc是一个固定的常数,只不过是我们并没有确切的知道这个值。但是我们可以通过抽样得到的数据信息对这个值进行估计。

为此费希尔把高斯的极大似然估计方法做了重新论述,使之用来对参数进行估计。

简要说一下这个方法的大概思路。

我们从车站观察了5次,x1、x2、x3、x4、x5,我们认为在仅有的实验条件下出现的结果应该就是最大概率出现的结果。

所以我们写出似然函数:

image-20240312105625984

然后求使得这个式子达到最大值的λc的值。

由于对数的单调性,通常会取对数再求极值。

具体计算省略掉,得到的值为:

image-20240312105659884

这便是费希尔的经典方法

3.2 贝叶斯派

贝叶斯学派的最基本观点就是:任何一个未知量都可以看作是随机的,应该用一个概率分布去描述未知参数,而不是频率派认为的固定值。

在进行参数估计之前,通过先验信息,我们常常可以得到一个关于未知参数的概率分布,即先验分布,或主观分布。

这在频率派看来是根本不允许的,说好的未知参数是一个固定值,只能通过大量的重复的实验频率来确定,怎么到这里成了一个不确定的值了呢?

一句话而言,频率派认为未知参数是客观的,贝叶斯派认为未知参数可以先从主观角度来考虑。

贝叶斯认为,λc 不应该是一个固定值,而应该是一个随机变量。

我们平时根据经验,可以对做出一个分布的估计。

在这个例子中,我们根据平时候车的经验,感觉λc的值有75%的可能是10,有25%的可能是8,基本上没有其他的可能性了。

用贝叶斯方法的描述就是,关于λc的先验分布为:

image-20240312105939223

如果我们现在去公交车站,观察了一次,X=7,也就是说我们获得了最新的数据信息。

最新的数据信息有助于我们更新对λc的认识,即更新关于λc的先验分布。

应用贝叶斯定理,得到:

image-20240312110105947

image-20240312110124212

image-20240312110134717

同理得,

image-20240312110204470

所以,通过我们获得的信息,我们更新了我们对于先验分布的认识,从而得到了后验分布。

从认知的角度而言,贝叶斯方法是一个动态的过程。

随着我们经验的积累、获取数据的积累,对未知参数的估计不断进行着调整。

所以,贝叶斯方法很快在自然语言处理方面展现出了较好的特性。

4. 小结

频率学派和贝叶斯学派在理论和实践中各有侧重,互为补充。

频率学派的优点是注重大样本下的一致性和渐进性质,在样本足够大的情况下可以得到较为准确的推断结果。它的方法论在经典统计推断中应用广泛,特别适用于重复试验或大规模数据的分析。

贝叶斯学派的优点是能够充分利用先验信息,并将其与样本数据结合,从而得到更准确的推断结果。它的方法论适用于小样本或无法进行重复试验的情境,以及需要考虑个体差异和主观判断的问题。

img

参考

  1. https://mp.weixin.qq.com/s?__biz=MjM5MDE3OTk2Ng==&mid=2657441571&idx=1&sn=8448415b9c3fa355e76918f88dcb9f7b&chksm=bdd940328aaec9249e769779007899e55bd7d2fb7fa4cb2c785896cabb61fd9d36a93a93c6be&scene=27
  2. https://blog.csdn.net/fmqdzh/article/details/120003189
  3. https://blog.csdn.net/zy_zhengyang/article/details/115529564
  4. https://baijiahao.baidu.com/s?id=1779292867410400878&wfr=spider&for=pc

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/482115.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深入理解MySQL中的JOIN算法

码到三十五 : 个人主页 心中有诗画,指尖舞代码,目光览世界,步履越千山,人间尽值得 ! 目录 一、引言二、嵌套循环连接(Nested-Loop Join)2.1 工作原理2.2 性能考虑2.3 优化策略 三、块嵌套循环…

如何在iOS系统抓取log

前言:因为作者目前工作领域和苹果智能家居有关,然后发现一些bug其实是apple sdk原生code的问题,所以需要给apple提radar单,就需要抓ios端Log充当证据给apple看,其实ios抓log非常简单,大家感兴趣可以学习下哦…

谈谈synchronized关键字

synchronized是什么? synchronized为同步之意,可保证在同一时刻,被它修饰的方法或代码块只能有一个线程执行,它的使用解决了并发多线程中的三大问题:原子性、可见性、顺序性。 有的书籍中可能会看到说synchronized是…

用vscode调试cpp程序相关操作记录

需要在服务器上用vscode调试cpp程序,写此记录launch.json配置和相关步骤错误导致的问题 1.在需要运行程序的服务器上安装C/C Extension Pack(之前只在本地装了),可以支持调试C/C应用程序(设置断点,单步执行&#xff0c…

【计算机视觉】Gaussian Splatting源码解读补充(二)

第一部分 本文是对学习笔记之——3D Gaussian Splatting源码解读的补充,并订正了一些错误。 目录 三、相机相关scene/cameras.py:class Camera 四、前向传播(渲染):submodules/diff-gaussian-rasterization/cuda_rast…

【java数据结构】基于java提供的ArrayList实现的扑克牌游戏-(附源码~)

【Java数据结构】基于java泛型实现的二维数组完成三人扑克游戏 基本框架的实现创建一副牌如何进行洗牌:每个人抓的牌放到哪里: 源码具体实现cardcardsTest 个人简介:努力学编程 每日鸡汤:stay foolish,stay hungry-史蒂芬.乔布斯斯…

springboot+vue 的图书个性化推荐系统的设计与实现

图书个性化推荐系统的主要使用者分为管理员和学生,实现功能包括管理员:首页、个人中心、学生管理、图书分类管理、图书信息管理、图书预约管理、退换图书管理、管理员管理、留言板管理、系统管理,学生:首页、个人中心、图书预约管…

适用于 Windows PC 的 6 款最佳照片恢复软件

您想向您的朋友展示您上个月访问迈阿密海滩的照片。可惜!您的 Windows 计算机中不再有照片文件夹。不仅是这个文件夹,您还发现您的许多重要和有趣时刻的照片都丢失了!这意味着您丢失了许多家庭成员、可爱宝宝的珍贵照片或毕业典礼等难忘活动的…

利用Base64加密算法将数据加密解密

1. Base64加密算法 Base64准确来说并不像是一种加密算法,而更像是一种编码标准。 我们知道现在最为流行的编码标准就是ASCLL,它用八个二进制位(一个char的大小)表示了127个字符,任何二进制序列都可以用这127个字符表…

chap验证实验

一、添加接口 在每个路由器里添加2SA接口 二、配IP 进入serial接口配置IP R1: R2: ppp mp Mp-group 0/0/0 R3: 查看: 三、aaa认证,chap验证 创建一个新用户: R2进入3/0/0接口: R1进入3/0/0接口&a…

制作一个RISC-V的操作系统六-bootstrap program(risv 引导程序)

文章目录 硬件基本概念qemu-virt地址映射系统引导CSR![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/86461c434e7f4b1b982afba7fad0256c.png)machine模式下的csr对应的csr指令csrrwcsrrs mhartid引导程序做的事情判断当前hart是不是第一个hart初始化栈跳转到c语言的…

【Android开发】【创建Activity,Activity之间的切换/消息传递】【java】

一、第一个Activity 1.1 创建一个空Activity 1.2 创建一个布局 知识点 在XML中引用一个id:id/id_name 在XML中定义一个id:id/id_name 右键错误,点击Show Quick-Fixes,再点击弹出的Suppress:Add........,错误会被自动修…

详细分析PyAutoGUI中的locate函数(附Demo)

目录 前言1. 基本知识2. 源代码分析3. Demo 前言 起因是实战中locate对个别定位会有偏差,导致一直识别错误 相应的基本知识推荐阅读:详细分析Python中的Pyautogui库(附Demo) 1. 基本知识 pyautogui.locate()函数用于在屏幕上定…

DBO优化朴素贝叶斯分类预测(matlab代码)

DBO-朴素贝叶斯分类预测matlab代码 蜣螂优化算法(Dung Beetle Optimizer, DBO)是一种新型的群智能优化算法,在2022年底提出,主要是受蜣螂的的滚球、跳舞、觅食、偷窃和繁殖行为的启发。 数据为Excel分类数据集数据。 数据集划分为训练集、验证集、测试…

YOLO-v8-seg实例分割使用

最近需要实例分割完成一些任务,一直用的SAM(segment anything)速度慢,找一个轻量分割模型。 1. YOLO-v8-seg使用 git clone https://github.com/ultralytics/ultralytics.git cd ultralytics vim run.py from ultralytics import YOLO# L…

鸿蒙一次开发,多端部署(十三)功能开发的一多能力介绍

应用开发至少包含两部分工作: UI页面开发和底层功能开发(部分需要联网的应用还会涉及服务端开发)。前面章节介绍了如何解决页面适配的问题,本章节主要介绍应用如何解决设备系统能力差异的兼容问题。 系统能力 系统能力&#xff…

RK3568驱动指南|第十三篇 输入子系统-第143章 多对多的匹配关系分析

瑞芯微RK3568芯片是一款定位中高端的通用型SOC,采用22nm制程工艺,搭载一颗四核Cortex-A55处理器和Mali G52 2EE 图形处理器。RK3568 支持4K 解码和 1080P 编码,支持SATA/PCIE/USB3.0 外围接口。RK3568内置独立NPU,可用于轻量级人工…

有哪些强大好用的AI表格数据处理工具或者 AI Excel工具?

在繁忙的工作和生活中,处理大量的表格数据往往令人感到头疼。面对一列列数字、一行行文字,我们需要花费大量的时间和精力去整理、核对。然而,随着科技的飞速发展,人工智能(AI)技术正逐渐改变这一现状。 如…

LLM 面试知识点——模型基础知识

1、主流架构 目前LLM(Large Language Model)主流结构包括三种范式,分别为Encoder-Decoder、Causal Decoder、Prefix Decode。对应的网络整体结构和Attention掩码如下图。 、 各自特点、优缺点如下: 1)Encoder-Decoder 结构特点:输入双向注意力,输出单向注意力。 代表…

Flutter开发进阶之瞧瞧RenderObject

Flutter开发进阶之瞧瞧RenderObject 通过上回我们了解到Flutter执行buildTree的逻辑线,当Tree构建完成后会交给Flutter底层的渲染事件循环去执行将内容渲染到屏幕的操作。 但是渲染的操作到底是如何串起来的呢?这篇文章将会从Element联系到RenderObject…