0201线性方程组和矩阵-矩阵及其运算-线性代数

文章目录

    • 一、线性方程组
    • 二、矩阵的定义
    • 结语

一、线性方程组

设有 n 个未知数 m n个未知数m n个未知数m个方程的线性方程组
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m , \begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\ \cdots\\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m,\\ \end{cases} a11x1+a12x2++a1nxn=b1,a21x1+a22x2++a2nxn=b2,am1x1+am2x2++amnxn=bm,
其中 a i j 是第 i 个方程的第 j a_{ij}是第i个方程的第j aij是第i个方程的第j个未知数的系数, b i 是第 i b_i是第i bi是第i个方程的常数项, i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯   , n i=1,2,\cdots,m;\quad j=1,2,\cdots,n i=1,2,,m;j=1,2,,n

当常数项 b 1 , b 2 , ⋯   , b n b_1,b_2,\cdots,b_n b1,b2,,bn不全为零时,线性方程组(1)叫做 n n n元非齐次线性方程组,当 b 1 , b 2 , ⋯   , b n b_1,b_2,\cdots,b_n b1,b2,,bn全为零时,(1)式称为 n n n元其次线性方程组。

对于线性方程组需要讨论以下问题:

  1. 它是否有解?
  2. 在有解时,它是否唯一?
  3. 如果有多个解,如何求出它的所有解?

对于线性方程组(1)上述问题的答案取决于它的 m × n 个系数 a i j ( i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯   , n ) m\times n个系数a_{ij}(i=1,2,\cdots,m;j=1,2,\cdots,n) m×n个系数aij(i=1,2,,m;j=1,2,,n)和右端的常数项 b 1 , b 2 , ⋯   , b n b_1,b_2,\cdots,b_n b1,b2,,bn所构成的 m 行 n + 1 m行n+1 mn+1列矩形数表:
a 11 a 12 ⋯ a 1 n b 1 a 21 a 22 ⋯ a 2 n b 2 ⋮ ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n b m \begin{matrix} a_{11}&a_{12}&\cdots&a_{1n}&b_1\\ a_{21}&a_{22}&\cdots&a_{2n}&b_2\\ \vdots&\vdots&&\vdots&\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn}&b_m\\ \end{matrix} a11a21am1a12a22am2a1na2namnb1b2bm
这里横排称为行,竖排称为列;对于齐次线性方程相应问题的答案完全取决于他的 m × n 个系数 a i j ( i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯   , n ) m\times n个系数a_{ij}(i=1,2,\cdots,m;j=1,2,\cdots,n) m×n个系数aij(i=1,2,,m;j=1,2,,n)所构成的 m 行 n 列 m行n列 mn矩形数表:
a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n \begin{matrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&&\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn}\\ \end{matrix} a11a21am1a12a22am2a1na2namn

二、矩阵的定义

定义1 由 m × n m\times n m×n个数 a i j ( i = 1 , 2 , ⋯   , n ; j = 1 , 2 , ⋯   , n ) a_{ij}(i=1,2,\cdots,n;j=1,2,\cdots,n) aij(i=1,2,,n;j=1,2,,n)排成的 m m m n n n列的数表
a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n \begin{matrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&&\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn}\\ \end{matrix} a11a21am1a12a22am2a1na2namn
称为 m 行 n 列 m行n列 mn矩阵,简称 m × n m\times n m×n矩阵,记作
A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n ) A=\begin{pmatrix} a_{11}&a_{12}&\cdots&a_{1n}\cr a_{21}&a_{22}&\cdots&a_{2n}\cr \vdots&\vdots&&\vdots\cr a_{m1}&a_{m2}&\cdots&a_{mn}\cr \end{pmatrix} A= a11a21am1a12a22am2a1na2namn
m × n m\times n m×n个数称为矩阵A的元素,简称为元,数 a i j a_{ij} aij位于矩阵A的第i行第j列,称为矩阵A的 ( i , j ) (i,j) (i,j)元,以数 a i j 为 ( i , j ) a_{ij}为(i,j) aij(i,j)元的矩阵简记作 a i j 或者 ( a i j ) m × n a_{ij}或者(a_{ij})_{m\times n} aij或者(aij)m×n, m × n m\times n m×n阶矩阵也记作 A m × n A_{m\times n} Am×n

元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。

**tips:**如无特殊说明,都为实矩阵。

行数和列数都等于 n n n的矩阵称为 n n n阶矩阵或 n n n阶方阵。 n 阶矩阵也记作 A n n阶矩阵也记作A_n n阶矩阵也记作An

只有一行的矩阵 A = ( a 1 a 2 ⋯ a n ) A=(a_1\quad a_2\quad \cdots\quad a_n) A=(a1a2an)称为行矩阵,又称行向量。只有一列的矩阵
B = ( b 1 b 2 ⋮ b m ) B=\begin{pmatrix} b_1\cr b_2\cr \vdots\cr b_m \end{pmatrix} B= b1b2bm
称为列矩阵,又称列向量。

两个矩阵行数相等、列数也相等时,就称它们是同型矩阵。如果 A = ( a i j ) 与 B = ( b i j ) A=(a_{ij})与B=(b_{ij}) A=(aij)B=(bij)是同行矩阵,并且它们的元素相等,即

a i j = b i j ( i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯ n ) a_{ij}=b_{ij}(i=1,2,\cdots,m;j=1,2,\cdots n) aij=bij(i=1,2,,m;j=1,2,n)

那么就称矩阵A和矩阵B相等,记作

A = B A=B A=B

元素都为零的矩阵称为零矩阵,记作O.

tips:不同型的零矩阵是不同的。

对于非齐次线性方程组:
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m , \begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\ \cdots\\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m,\\ \end{cases} a11x1+a12x2++a1nxn=b1,a21x1+a22x2++a2nxn=b2,am1x1+am2x2++amnxn=bm,
有如下几个矩阵:
A = ( a i j ) x = ( x 1 x 2 ⋮ x n ) b = ( b 1 b 2 ⋮ b m ) B = ( a 11 a 12 ⋯ a 1 n b 1 a 21 a 22 ⋯ a 2 n b 2 ⋮ ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n b m ) A=(a_{ij})\\ x=\begin{pmatrix} x_1\cr x_2\cr \vdots\\ x_n\\ \end{pmatrix}\\ b=\begin{pmatrix} b_1\cr b_2\cr \vdots\\ b_m\\ \end{pmatrix}\\ B=\begin{pmatrix} a_{11}&a_{12}&\cdots&a_{1n}&b_1\\ a_{21}&a_{22}&\cdots&a_{2n}&b_2\\ \vdots&\vdots&&\vdots&\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn}&b_m\\ \end{pmatrix} A=(aij)x= x1x2xn b= b1b2bm B= a11a21am1a12a22am2a1na2namnb1b2bm
其中A成为系数矩阵,x成为未知数矩阵,b成为常数项矩阵,B成为增广矩阵。

例2 某长向三个商店(编号1,2,3)发送四种产品(编号一、二、三、四)的数量可列成矩阵
行为商店编号,列为产品编号 A = ( a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 34 a 31 a 32 a 33 a 34 ) 行为商店编号,列为产品编号\\ A=\begin{pmatrix} a_{11}&a_{12}&a_{13}&a_{14}\\ a_{21}&a_{22}&a_{23}&a_{34}\\ a_{31}&a_{32}&a_{33}&a_{34}\\ \end{pmatrix} 行为商店编号,列为产品编号A= a11a21a31a12a22a32a13a23a33a14a34a34
其中 a i j a_{ij} aij为工厂向第 i i i家商店发送的第 j j j种商品。

这四种商品的单价即单件质量也可列成矩阵
行表示产品编号,列表示(单价、单件质量) A = ( b 11 b 12 b 21 b 22 b 31 b 32 b 41 b 42 ) 行表示产品编号,列表示(单价、单件质量)\\ A=\begin{pmatrix} b_{11}&b_{12}\\ b_{21}&b_{22}\\ b_{31}&b_{32}\\ b_{41}&b_{42}\\ \end{pmatrix} 行表示产品编号,列表示(单价、单件质量)A= b11b21b31b41b12b22b32b42
其中 b i 1 b_{i1} bi1为第 i i i种商品的单价, b i 2 b_{i2} bi2表示第 i i i种商品的单件质量。

例3 四个城市间的单向航线如图2.1所示,若令
a i j = { 1 , 从市到 j 市有 1 条单向航线, 0 , 从市到 j 市没有单向航线, a_{ij}=\begin{cases} 1,从市到j市有1条单向航线,\\ 0,从市到j市没有单向航线,\\ \end{cases} aij={1,从市到j市有1条单向航线,0,从市到j市没有单向航线,

则图2.1可用矩阵表示为

在这里插入图片描述

则图 2.1 可用矩阵表示为 ( 0 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 ) 则图2.1可用矩阵表示为\\ \begin{pmatrix} 0&1&1&1\\ 1&0&0&0\\ 0&1&0&0\\ 1&0&1&0\\ \end{pmatrix} 则图2.1可用矩阵表示为 0101101010011000
一般地,若干个点之间的单向通道都可用这样的矩阵表示。

例4 n n n个变量 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn m m m个变量 y 1 , y 2 , ⋯   , y m y_1,y_2,\cdots,y_m y1,y2,,ym之间的关系式
{ y 1 = a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n , y 2 = a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n , ⋯ ⋯ ⋯ y m = a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n \begin{cases} y_1=a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n,\\ y_2=a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n,\\ \cdots\cdots\cdots\\ y_m=a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n\\ \end{cases} y1=a11x1+a12x2++a1nxn,y2=a21x1+a22x2++a2nxn,⋯⋯⋯ym=am1x1+am2x2++amnxn
表示一个从变量 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn到变量 y 1 , y 2 , ⋯   , y m y_1,y_2,\cdots,y_m y1,y2,,ym线性变换,其中 a i j a_{ij} aij为常数。线性变换的系数 a i j a_{ij} aij构成矩阵 A = ( a i j ) m × n A=(a_{ij})_{m\times n} A=(aij)m×n.

tips:线性变换与矩阵之间存在着一一对应的关系。

例如线性变换
{ y 1 = λ x 1 , y 2 = λ x 2 , ⋯ y n = λ x n \begin{cases} y_1=\lambda x_1,\\ y_2=\lambda x_2,\\ \cdots\\ y_n=\lambda x_n \end{cases} y1=λx1,y2=λx2,yn=λxn
对应n阶方阵:
A = ( λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋱ 0 0 0 ⋯ λ n ) A=\begin{pmatrix} \lambda_1&0&\cdots&0\\ 0&\lambda_2&\cdots&0\\ \vdots&\vdots&\ddots&0\\ 0&0&\cdots&\lambda_n\\ \end{pmatrix} A= λ1000λ20000λn

这个方阵特点:从左上角到右下角的直线(叫做对角线)以外的元素都是0.这种方阵称为对角矩阵,简称对角阵,记作

A = d i a g ( λ 1 , λ 2 , ⋯   , λ n ) A=diag(\lambda_1,\lambda_2,\cdots,\lambda_n) A=diag(λ1,λ2,,λn)

特别当 λ 1 = λ 2 = ⋯ = λ n = 1 \lambda_1=\lambda_2=\cdots=\lambda_n=1 λ1=λ2==λn=1时的线性变换叫做恒等变换,它对应的n阶方阵
A = ( 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋱ 0 0 0 ⋯ 1 ) A=\begin{pmatrix} 1&0&\cdots&0\\ 0&1&\cdots&0\\ \vdots&\vdots&\ddots&0\\ 0&0&\cdots&1\\ \end{pmatrix} A= 1000100001
叫做n阶单位矩阵,简称单位阵。矩阵特点:对角线上的元素都是1,其他元素都是0,即单位阵 E 的 ( i , j ) 元 e i j E的(i,j)元e_{ij} E(i,j)eij
e i j = { 1 , 当 i = j , 0 , 当 i ≠ j ( i , j = 1 , 2 , ⋯   , n ) e_{ij}=\begin{cases} 1,当i=j,\\ 0,当i\not=j \end{cases} (i,j=1,2,\cdots,n) eij={1,i=j,0,i=j(i,j=1,2,,n)

结语

❓QQ:806797785

⭐️文档笔记地址 https://github.com/gaogzhen/math

参考:

[1]同济大学数学系.工程数学.线性代数 第6版 [M].北京:高等教育出版社,2014.6.p24-29.

[2]同济六版《线性代数》全程教学视频[CP/OL].2020-02-07.p6.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/480263.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[AutoSar]BSW_Com017 COM模块介绍(一)

目录 关键词平台说明一、COM 所处架构位置二、COM 的功能概述三、Functional Specification3.1 AUTOSAR COM basis function3.2 Signal Gateway3.2.1 Signal routing requirements3.2.2 Routing of signal groups3.2.3 Routing latency for normal Signal Gateway3.2.4 Gateway…

Nacos介绍和Eureka的区别

Nacos(全称为 Alibaba Cloud Nacos,或简称为 Nacos)是一个开源的分布式服务发现和配置管理系统。它由阿里巴巴集团开发并开源,旨在帮助开发人员简化微服务架构下的服务注册、发现和配置管理。 1、Nacos 提供了以下主要功能&#…

Django在日志中使用AdminEmailHandler发送邮件(同步),及celery异步发送日志邮件的实现

目录 一、使用AdminEmailHandler实现发送日志通知邮件 1,配置日志项 2,配置邮件项 3,在视图里使用日志 二、继承AdminEmailHandler使用celery实现异步发送邮件 1,安装配置celery 2,继承AdminEmailHandler类&…

V2X技术与智能传感器的完美融合:提升城市道路安全

在科技不断创新的今天,城市交通领域涌现了大量新技术。有时候我们不仅仅需要独立应用这些新技术来实现交通的变革,更需要将它们巧妙地结合连接起来,以获取更高效更安全的交通环境。本文将探讨V2X技术与智能传感器的结合,如何在城市…

uni-app打包证书android

Android平台打包发布apk应用,需要使用数字证书(.keystore文件)进行签名,用于表明开发者身份。 Android证书的生成是自助和免费的,不需要审批或付费。 可以使用JRE环境中的keytool命令生成。 以下是windows平台生成证…

1升级powershell后才能安装WSL2--最后安装linux--Ubuntu 22.04.3 LTS

视频 https://www.bilibili.com/video/BV1uH4y1W7UX特殊开启–Hyper-V虚拟机 把一下代码保存到【a.bat】的执行文件中,进行Hyper-V虚拟机的安装开启【Windows 批处理文件 (.bat)】 pushd "%~dp0" dir /b %SystemRoot%\servicing\Packages\*Hyper-V*.mu…

elasticsearch的数据搜索

DSL查询文档 elasticsearch的查询依然是基于JSON风格的DSL来实现的。 Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括: 查询所有:查询出所有数据,一般测试用。例如:match_all 全文检索(full text)查询:利用分词器对用户…

鸿蒙Harmony应用开发—ArkTS(@Styles装饰器:定义组件重用样式)

如果每个组件的样式都需要单独设置,在开发过程中会出现大量代码在进行重复样式设置,虽然可以复制粘贴,但为了代码简洁性和后续方便维护,我们推出了可以提炼公共样式进行复用的装饰器Styles。 Styles装饰器可以将多条样式设置提炼…

学点儿Java_Day9_String、包装类

1 String 详解“”和equals的区别 Testpublic void test1() {//"abc"双引号括起来的字符串:字符串常量,它也是一个对象// 1.8之后常量池放到堆,在常量池里面找有没有这个"abc"对象,// 如果常量池里面没有这…

是德科技keysight N1912A双通道功率计

181/2461/8938产品概述: Keysight(原Agilent) N1912A P系列双通道功率计可提供峰值、峰均比、平均功率、上升时间、下降时间、最大功率值、最小功率值以及宽带信号的统计数据。 Keysight(原Agilent) N1912A P系列双通道功率计, 可提供峰值、峰均比、平均功率、上升…

nodejs各版本下载

https://registry.npmmirror.com/binary.html 然后进入nodejs各个版本,然后按需选择

JAVA 栈和队列总结

除了最底层下面三个是实现类,其他都是接口。 双端队列(队头队尾都可以插入和删除元素)的方法: 普通队列方法: 常用的是add(),poll(), element() 我们用Deque(双端队列)实现栈 Deque当栈用的时候的方法。 deque.push…

百度小程序入口在哪里找到怎么打开百度词令关键词口令直达小程序?

百度小程序入口在哪里找到怎么打开百度词令关键词口令直达小程序? 一、百度搜索找到百度词令小程序 打开手机百度搜索「词令」即可找到百度词令关键词口令直达小程序; 二、百度小程序中心找到百度小程序 2.1、打开手机百度,点击底部我的&a…

解决用POI库生成的word文件中的表格在python-docx无法解析的问题

问题背景 用apache-poi生成word文件中表格&#xff0c;在使用python-docx库解析时报错&#xff1a; 问题分析 1. word文档本质上是一个rar压缩包&#xff0c;用winrar解析后如下&#xff1a; 2. 查看document.xml&#xff0c;可以看到table元素下面是没有<w:tblGrid>这…

Carla 自动驾驶挑战赛 搭建环境

1. 系统设置 1.1 下载CARLA排行榜包 下载打包的CARLA 排行榜版本。 将包解压到一个文件夹中&#xff0c;例如 CARLA。 在以下命令中&#xff0c;更改${CARLA_ROOT}变量以对应于您的 CARLA 根文件夹。 为了使用 CARLA Python API&#xff0c;您需要在您喜欢的环境中安装一些…

ARM-Linux 开发板下安装编译 OpenCV 和 Dlib

安装 OpenCV 和 Dlib 不像在 x86 平台下那样简单&#xff0c;用一句命令就可以自动安装完。而在 ARM 平台中许多软件都需要自行下载编译&#xff0c;且还有许多问题&#xff0c;本篇文章就是记录在 ARM 平台下载 OpenCV 踩过的坑。 硬件环境&#xff1a; RK3568 Ubuntu20.04…

一文读懂I2C协议

一.硬件连接 I2C必须使用开漏&#xff08;或集电极开路&#xff09;的引脚&#xff0c;其引脚框图如下所示。 SCL0对应78K0的P6.0引脚&#xff0c;SDA0对应78K0的P6.1引脚。 在使用开漏引脚通信时&#xff0c;需注意如下事项&#xff1a; 1&#xff09;两条总线须外接…

jvm提供的远程调试 简单使用

JVM自带远程调试功能 JVM远程调试&#xff0c;其实是两个虚拟机之间&#xff0c;通过socket通信&#xff0c;达到远程调试的目的&#xff1b; 前提 确保本地和远程的网络是开通的&#xff1b; 本地操作 远程操作 在启动命令参数中 把上面的内容复制进去

基于CSS3制作专属可自由旋转的立方体

一、代码区域 1.1 css3代码区域 <style>* {padding: 0;margin: 0;list-style: none;}/* 1) 定义动画 */keyframes loop {0% {transform: rotateX(348deg) rotateY(67deg) rotateZ(95deg);}50% {transform: rotateX(0deg) rotateY(0deg) rotateZ(0deg);}100% {transform:…

list.sort()Collections.sort()深入理解

list.sort()&&Collections.sort() 文章目录 list.sort()&&Collections.sort()背景相关代码代码一代码二 原理举一反三 业务场景考虑 背景 业务中经常用到List的sort()方法&#xff0c;但是对于其中return的-1&#xff0c;0&#xff0c;1理解不到位&#xff0c…