深度学习Top10算法之深度神经网络DNN

深度神经网络(Deep Neural Networks,DNN)是人工神经网络(Artificial Neural Networks,ANN)的一种扩展。它们通过模仿人脑的工作原理来处理数据和创建模式,广泛应用于图像识别、语音识别、自然语言处理等领域。

一、背景

早期发展(1940s-1980s)

1940年代初期:神经网络的最初概念源于Warren McCulloch和Walter Pitts的工作。他们提出了一种简化的大脑神经元模型,并展示了其计算潜力。
1958年:Frank Rosenblatt发明了感知机(Perceptron),这是一种二进制输出的简单神经网络,可执行简单的分类任务。
1969年:Marvin Minsky和Seymour Papert出版了《Perceptrons》,指出了感知机的局限性,尤其是它不能解决线性不可分问题(如异或问题)。这导致了第一次AI冬天。

BP算法(1980s)

1980年代初期:多层神经网络和反向传播算法(Backpropagation,BP)的发展标志着神经网络研究的复兴。特别是,1986年,David Rumelhart、Geoffrey Hinton和Ronald Williams发表了一篇关键论文,详细描述了BP算法。这种算法能够有效地训练多层网络,并解决了感知机面临的某些限制。

深度学习的崛起(2000s-2010s)

2006年:Geoffrey Hinton和他的学生在一篇论文中重新引入了深度神经网络的概念,提出了一种新的无监督预训练方法。这标志着深度学习时代的开始。
2012年:Alex Krizhevsky、Ilya Sutskever和Geoffrey Hinton发布了AlexNet的论文。这个模型在ImageNet竞赛中大获全胜,展示了深度学习在视觉识别任务中的巨大潜力。
随后几年:深度学习在各个领域迅速崛起,特别是在计算机视觉、自然语言处理等领域。诸如卷积神经网络(CNN)、循环神经网络(RNN)以及长短期记忆网络(LSTM)等架构的发展,进一步推动了这一领域的发展。

二、原理介绍

深度神经网络的原理

深度神经网络(DNN)的基本构成包括输入层、若干隐藏层和输出层。每个层由多个神经元(或称为节点)组成,这些神经元通过带权重的连接相互作用。下面是DNN的基本数学原理和公式:

1. 神经元模型

每个神经元接收来自前一层神经元的输入,计算加权和,并应用一个激活函数。一个神经元的输出可以表示为:

y = f ( ∑ i = 1 n w i x i + b ) y = f\left(\sum_{i=1}^{n} w_i x_i + b\right) y=f(i=1nwixi+b)

其中:

  • x i x_i xi 是输入值,
  • w i w_i wi 是对应的权重,
  • b b b 是偏置项,
  • f f f 是激活函数(如ReLU、Sigmoid等)。
2. 前向传播

在前向传播过程中,数据从输入层经过每一隐藏层直到输出层。每一层的输出都是下一层的输入。

3. 激活函数

激活函数是用来引入非线性因素的,使得网络能够学习和执行更复杂的任务。常用的激活函数包括:

  • ReLU: f ( x ) = max ⁡ ( 0 , x ) f(x) = \max(0, x) f(x)=max(0,x)
  • Sigmoid: f ( x ) = 1 1 + e − x f(x) = \frac{1}{1 + e^{-x}} f(x)=1+ex1
  • Tanh: f ( x ) = tanh ⁡ ( x ) f(x) = \tanh(x) f(x)=tanh(x)
4. 损失函数

损失函数(Loss Function)用于评估模型的预测值与真实值之间的差距。常见的损失函数包括均方误差(MSE)用于回归任务,交叉熵(Cross-Entropy)用于分类任务。

5. 反向传播与梯度下降

反向传播算法用于计算每个权重对于总损失的影响。基于这个影响,通过梯度下降算法更新权重,以减小损失函数的值。权重更新公式为:

w = w − η ⋅ ∂ L ∂ w w = w - \eta \cdot \frac{\partial L}{\partial w} w=wηwL

其中:

  • w w w 是权重,
  • η \eta η 是学习率,
  • ∂ L ∂ w \frac{\partial L}{\partial w} wL 是损失函数相对于权重的梯度。
6. 优化器

优化器是用来更新网络的权重以减小损失函数值的算法。常见的优化器包括随机梯度下降(SGD)、Adam等。

通过这些步骤,DNN能够从数据中学习复杂的模式和关系,适用于广泛的预测和分类任务。
在这里插入图片描述

三、项目具体案例:基于DNN的衣服分类

数据集

我们将使用著名的Fashion MNIST数据集,它包含了70000张灰度图像,分为10个类别,每个类别有7000张图像。图像的尺寸为28x28像素。

实现步骤

1.导入所需库:首先导入TensorFlow和其他必要的Python库。
2.加载和预处理数据:加载Fashion MNIST数据集,并进行适当的预处理。
3.定义模型:构建一个深度神经网络模型。
4.编译模型:定义损失函数、优化器和评估指标。
5.训练模型:使用训练数据训练模型。
6.评估模型:使用测试数据评估模型的性能。
7.模型预测:对新图像进行预测分类。

示例代码

以下是用于上述任务的Python代码示例。请注意,这是一个简化的示例,实际应用可能需要更详细的调参和优化。

import tensorflow as tf
from tensorflow.keras.datasets import fashion_mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten
from tensorflow.keras.optimizers import Adam

# 加载数据集
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

# 数据预处理
train_images = train_images / 255.0
test_images = test_images / 255.0

# 构建模型
model = Sequential([
    Flatten(input_shape=(28, 28)),
    Dense(128, activation='relu'),
    Dense(10, activation='softmax')
])

# 编译模型
model.compile(optimizer=Adam(),
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 训练模型
model.fit(train_images, train_labels, epochs=10)

# 评估模型
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)

# 使用模型进行预测
predictions = model.predict(test_images)

这段代码首先导入了必要的库,然后加载Fashion MNIST数据集,并对其进行简单的归一化处理。之后,我们构建了一个简单的神经网络模型,包括一个输入层(通过Flatten层实现),两个Dense层作为隐藏层和输出层。接着,我们编译并训练了模型,并在测试集上评估了其性能。最后,我们使用训练好的模型对新图像进行预测。

四、优势与不足

深度神经网络(DNN)是当今人工智能和机器学习领域中最为突出的技术之一,其应用广泛,影响深远。然而,正如任何技术一样,DNN在拥有显著优势的同时,也存在一些不可忽视的不足。以下是对深度神经网络优势与不足的详细分析:

DNN的优势

  1. 强大的数据表示能力
    DNN通过学习大量数据中的复杂模式,能够自动提取和构建有效的数据表示。与传统的机器学习方法相比,DNN不需要人工设计特征,而是可以从原始数据中直接学习到深层次的特征表示。

  2. 多层次的特征学习
    在DNN中,每个隐藏层都可以看作是在进行一种特征的转换和抽象。较低层可能学习到数据的基本元素(如边缘或颜色),而更高层则能够识别更复杂的模式(如物体或人脸)。这种分层学习使得DNN在处理复杂问题时更加高效。

  3. 灵活性和通用性
    DNN的架构设计非常灵活,可以通过改变层数、神经元数目、激活函数等来调整网络结构,从而适应不同类型的数据和任务,如图像识别、语音识别和自然语言处理等。

  4. 大数据驱动
    随着大数据时代的到来,DNN能够利用其强大的数据处理能力,在海量数据中进行学习,这使得其性能随着数据量的增加而提高。

  5. 不断的技术进步
    DNN领域不断有新的研究和技术进展,比如各种新型神经网络架构(如卷积神经网络CNN、循环神经网络RNN)和优化算法,这些进步持续推动着DNN在各个领域的应用。

DNN的不足

  1. 对数据和计算资源的高需求
    DNN通常需要大量的训练数据来实现有效的学习,这在某些情况下可能难以满足。此外,DNN的训练和推理过程计算量大,对硬件资源(如GPU)的需求高。

  2. 过拟合的风险
    在数据量有限或者模型过于复杂的情况下,DNN容易发生过拟合,即模型在训练数据上表现良好,但在新数据上性能下降。

  3. 可解释性问题
    DNN的决策过程往往被视为一个“黑盒”,其内部是如何处理数据和做出决策的,往往缺乏直观的解释。这在需要决策透明度的应用中,如医疗诊断,成为一个重要问题。

  4. 长期依赖问题
    在某些类型的DNN(尤其是RNN)中,模型可能难以学习输入序列中的长期依赖关系。虽然有如LSTM这样的结构来解决这个问题,但它们仍然有其局限性。

  5. 对噪声和对抗样本的脆弱性
    DNN在面对包含噪声的数据或者特意设计的对抗样本时,其性能的稳定性和鲁棒性可能会显著降低。这种脆弱性在安全敏感的应用中尤为重要,如自动驾驶汽车和欺诈检测系统。

  6. 调参难度大
    虽然DNN提供了极大的灵活性,但这也意味着需要调整大量的超参数,如学习率、层数、神经元数量等。合适的参数选择对于模型的性能至关重要,而找到最优参数组合往往需要大量的实验和经验。

  7. 非平稳和动态环境下的挑战
    DNN通常在静态数据集上训练得到最佳性能。然而,在实际应用中,数据可能是非平稳的(即数据分布随时间变化),这需要模型具有动态适应能力,而传统DNN在这方面可能存在不足。

  8. 训练和调试的复杂性
    DNN的训练过程可能非常复杂和时间消耗巨大。此外,当模型表现不佳时,确定问题所在并不总是直观的,这可能导致调试过程费时费力。

  9. 能源效率
    DNN的训练和推理过程通常需要大量计算资源,这导致较高的能源消耗。在可持续性和环境影响日益受到重视的背景下,这一点成为一个重要考量。

  10. 泛化能力的限制
    虽然DNN在训练集上的表现可能很好,但它们在面对与训练数据显著不同的新数据时,泛化能力可能有限。这表明DNN可能在学习数据分布的特定方面,而不是获取到真正通用的知识。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/480096.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

从JDK动态代理一步步推导到MyBatis Plugin插件实现原理

一、前言 最近项目上,要做一个日志审计的功能(通用SDK,期望可以在任何项目中使用),需要对Mybatis层所有的DDL操作做拦截,以将微服务的链路ID、执行人、Controller门面方法全部持久化到业务库。借此机会深入…

JavaScript 权威指南第七版(GPT 重译)(二)

第四章:表达式和运算符 本章记录了 JavaScript 表达式以及构建许多这些表达式的运算符。表达式 是 JavaScript 的短语,可以 评估 以产生一个值。在程序中直接嵌入的常量是一种非常简单的表达式。变量名也是一个简单表达式,它评估为分配给该变…

Linux安装harbor(Docker方式)

Linux安装harbor(Docker方式) 前置条件:安装docker和docker-compose先下载安装包:https://github.com/goharbor/harbor/releases解压到指定目录 sudo tar -zxf harbor-offline-installer-v2.1.0.tgz -C /opt/安装 cd /opt/harb…

【Canvas与艺术】简约式胡萝卜配色汽车速度表

【效果图】 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>胡萝卜色汽车速度仪表盘简化版</title><style type"…

AI助力生产制造质检,基于轻量级YOLOv8n模型开发构建工业生产制造场景下的瓷砖瑕疵检测识别分析系统

瓷砖生产环节一般经过原材料混合研磨、脱水、压胚、喷墨印花、淋釉、烧制、抛光&#xff0c;最后进行质量检测和包装。得益于产业自动化的发展&#xff0c;目前生产环节已基本实现无人化。而质量检测环节仍大量依赖人工完成。一般来说&#xff0c;一条产线需要配数名质检工&…

此站点正在尝试打开 ,chrome/edge 允许http网站打开url schema

正常https链接会有首次允许选项 但http没有&#xff0c;每次都会弹出&#xff0c;非常烦人。 Chrome / Edge 配置 地址栏输入 chrome://flags/搜索Insecure origins treated as secure, 配置允许网站&#xff0c;需要协议和端口再次跳转会显示始终允许选项

Sphinx + Readthedocs 避坑速通指南

博主在学习使用 Sphinx 和 Read the docs 的过程中&#xff0c; 碰到了许多奇葩的 bug, 使得很简单的任务花费了很长的时间才解决&#xff0c;现在在这里做一个分享&#xff0c;帮助大家用更少的时间高效上线文档的内容。 总的来说&#xff0c; 任务分为两个部分&#xff1a; …

Jetson AGX ORIN 初始化配置Anaconda带CUDA的OpenCV

Jetson AGX ORIN 初始化&配置CUDA&Anaconda&带CUDA的OpenCV 文章目录 Jetson AGX ORIN 初始化&配置CUDA&Anaconda&带CUDA的OpenCV1. Jetson AGX ORIN 初始化2. Jetson AGX ORIN 配置 Anaconda3. 安装带CUDA的OpenCV 1. Jetson AGX ORIN 初始化 可以参…

[音视频学习笔记]七、自制音视频播放器Part2 - VS + Qt +FFmpeg 写一个简单的视频播放器

前言 话不多说&#xff0c;重走霄骅登神路 前一篇文章 [音视频学习笔记]六、自制音视频播放器Part1 -新版本ffmpeg&#xff0c;Qt VS2022&#xff0c;都什么年代了还在写传统播放器&#xff1f; 本文相关代码仓库&#xff1a; MediaPlay-FFmpeg - Public 转载雷神的两个流程…

css3鼠标悬停图片特效,图片悬停效果源码

特效介绍 css3鼠标悬停图片特效,图片悬停效果源码&#xff0c;可以在网页上面作为自己的动态加载名片&#xff0c;放到侧边栏或者网站合适的位置即可 动态效果 代码下载 css3鼠标悬停图片特效,图片悬停效果源码

阿里云 EMR Serverless Spark 版免费邀测中

随着大数据应用的广泛推广&#xff0c;企业对于数据处理的需求日益增长。为了进一步优化大数据开发流程&#xff0c;减少企业的运维成本&#xff0c;并提升数据处理的灵活性和效率&#xff0c;阿里云开源大数据平台 E-MapReduce &#xff08;简称“EMR”&#xff09;正式推出 E…

数据挖掘与机器学习 1. 绪论

于高山之巅&#xff0c;方见大河奔涌&#xff1b;于群峰之上&#xff0c;便觉长风浩荡 —— 24.3.22 一、数据挖掘和机器学习的定义 1.数据挖掘的狭义定义 背景&#xff1a;大数据时代——知识贫乏 数据挖掘的狭义定义&#xff1a; 数据挖掘就是从大量的、不完全的、有噪声的、…

基于docker配置pycharm开发环境

开发过程中&#xff0c;为了做好环境隔离&#xff0c;经常会采用docker来进行开发&#xff0c;但是如何快速将docker中的环境和本地开发的IDE链接起来是一个常见问题&#xff0c;下面对其进行简单的总结&#xff1a; &#xff08;1&#xff09;前期准备 开发环境docker和工具p…

ENISA 2023年威胁态势报告:主要发现和建议

欧盟网络安全局(ENISA)最近发布了其年度2023年威胁态势报告。该报告确定了预计在未来几年塑造网络安全格局的主要威胁、主要趋势、威胁参与者和攻击技术。在本文中&#xff0c;我们将总结报告的主要发现&#xff0c;并提供可操作的建议来缓解这些威胁。 介绍 ENISA 威胁态势报告…

活动回顾 | 走进华为向深问路,交流数智办公新体验

3月20日下午&#xff0c;“企业数智办公之走进华为”交流活动在华为上海研究所成功举办。此次活动由上海恒驰信息系统有限公司主办&#xff0c;华为云计算技术有限公司和上海利唐信息科技有限公司协办&#xff0c;旨在通过对企业数字差旅和HR数智化解决方案的交流&#xff0c;探…

在 Linux/Ubuntu/Debian 上安装 SQL Server 2019

Microsoft 为 Linux 发行版&#xff08;包括 Ubuntu&#xff09;提供 SQL Server。 以下是有关如何执行此操作的基本指南&#xff1a; 注册 Microsoft Ubuntu 存储库并添加公共存储库 GPG 密钥&#xff1a; sudo wget -qO- https://packages.microsoft.com/keys/microsoft.as…

53、Qt/信号与槽、QSS界面设计20240322

一、使用手动连接&#xff0c;将登录框中的取消按钮使用qt4版本的连接到自定义的槽函数中&#xff0c;在自定义的槽函数中调用关闭函数 将登录按钮使用qt5版本的连接到自定义的槽函数中&#xff0c;在槽函数中判断ui界面上输入的账号是否为"admin"&#xff0c;密码是…

IDEA调优-四大基础配置-编码纵享丝滑

文章目录 1.JVM虚拟机选项配置2.多线程编译速度3.构建共享堆内存大小4.关闭不必要的插件 1.JVM虚拟机选项配置 -Xms128m -Xmx8192m -XX:ReservedCodeCacheSize1024m -XX:UseG1GC -XX:SoftRefLRUPolicyMSPerMB50 -XX:CICompilerCount2 -XX:HeapDumpOnOutOfMemoryError -XX:-Omi…

赋能 DevOps:平台工程的关键作用

在当今快节奏的数字环境中&#xff0c;DevOps 已成为寻求简化软件开发和交付流程的组织的关键方法。DevOps 的核心在于开发和运营团队之间协作的概念&#xff0c;通过一组旨在自动化和提高软件交付生命周期效率的实践和工具来实现。 DevOps 实践的关键推动因素之一是平台工程。…

小程序渲染层图标错误

小程序渲染图标层出现错误&#xff1a; 官方提示&#xff1a;不影响可以忽略&#xff1b; 通过阿里巴巴矢量图标库--项目设置--字体格式--选中base64格式&#xff1b; 重新更新图标库代码&#xff0c;替换项目中的图标库&#xff1b; 重新加载小程序--渲染层错误的提示消失&…