2023ICML(International Conference on Machine Learning,国际机器学习会议)在2023年7月23日-29日在美国夏威夷举行。2023年ICML 共收到 6538 份投稿,其中 1827 份被接收,接收率约为 27.9%。(好像ICML24要开始第一轮rebuttal了,蹭蹭热度)
本文总结了ICML 23有关**时间序列(Time Series)和时空(Spatial-temporal)**的相关论文,如有疏漏,欢迎大家补充。
时间序列Topic:插补,预测,因果,表示学习,无监督,对比学习,不确定性等
时空数据Topic:AI4Science,GeoAI,时空预测等
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅
目录
时间序列(Time Series)
- Probabilistic Imputation for Time-series Classification with Missing Data
- Provably Convergent Schrödinger Bridge with Applications to Probabilistic Time Series Imputation
- Deep Latent State Space Models for Time-Series Generation
- Neural Stochastic Differential Games for Time-series Analysis
- Context Consistency Regularization for Label Sparsity in Time Series
- Sequential Multi-Dimensional Self-Supervised Learning for Clinical Time Series
- SOM-CPC: Unsupervised Contrastive Learning with Self-Organizing Maps for Structured Representations of High-Rate Time Series
- Prototype-oriented unsupervised anomaly detection for multivariate time series
- Learning Deep Time-index Models for Time Series Forecasting
- [Oral]Neural Continuous-Discrete State Space Models for Irregularly-Sampled Time Series
- [Oral]Self-Interpretable Time Series Prediction with Counterfactual Explanations
- Learning Perturbations to Explain Time Series Predictions
- Feature Programming for Multivariate Time Series Prediction
- Theoretical Guarantees of Learning Ensembling Strategies with Applications to Time Series Forecasting
- Sequential Predictive Conformal Inference for Time Series
- Non-autoregressive Conditional Diffusion Models for Time Series Prediction
- Sequential Monte Carlo Learning for Time Series Structure Discovery
- Domain Adaptation for Time Series Under Feature and Label Shifts
时空数据(Spatial-temporal)
- NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with Spatial-temporal Decomposition
- Spatial Implicit Neural Representations for Global-Scale Species Mapping
- Spatial-Temporal Graph Learning with Adversarial Contrastive Adaptation
时间序列(time series)
1. Probabilistic Imputation for Time-series Classification with Missing Data
大会论文链接:https://icml.cc/virtual/2023/poster/23522
PMLR链接:https://proceedings.mlr.press/v202/kim23m
作者:SeungHyun Kim · Hyunsu Kim · EungGu Yun · Hwangrae Lee · Jaehun Lee · Juho Lee
机构:韩国科学技术院(KAIST),赛视智能(Saige Research),三星研究院
关键词:时间序列数据插补,概率模型,不确定性
2. Provably Convergent Schrödinger Bridge with Applications to Probabilistic Time Series Imputation
大会论文链接:https://icml.cc/virtual/2023/poster/24369
PMLR链接:https://proceedings.mlr.press/v202/chen23f.html
代码:https://github.com/morganstanley/MSML/tree/main/papers/Conditional_Schrodinger_Bridge_Imputation
作者:Yu Chen · Wei Deng · Shikai Fang · Fengpei Li · Tianjiao N Yang · Yikai Zhang · Kashif Rasul · Shandian Zhe · Anderson Schneider · Yuriy N evmyvaka
机构:摩根士丹利,犹他大学(Utah),埃默里大学(Emory)
关键词:时间序列插补、概率模型
3. Deep Latent State Space Models for Time-Series Generation
大会论文链接:https://icml.cc/virtual/2023/poster/24503
PMLR链接:https://proceedings.mlr.press/v202/zhou23i.html
作者:Linqi Zhou · Michael Poli · Winnie Xu · Stefano Massaroli · Stefano Ermon
机构:斯坦福大学(Stanford),多伦多大学(Toronto),MILA
关键词:时间序列生成
4. Neural Stochastic Differential Games for Time-series Analysis
大会论文链接:https://icml.cc/virtual/2023/poster/25204
PMLR链接:https://proceedings.mlr.press/v202/park23j.html
代码:https://github.com/LGAI-AML/MaSDEs
作者:Sungwoo Park, Byoungwoo Park, Moontae Lee, Changhee Lee
机构:LG AI Research,韩国中央大学,伊利诺伊大学芝加哥分校(UIC)
关键词:时间序列分析
5. Context Consistency Regularization for Label Sparsity in Time Series
大会论文链接:https://icml.cc/virtual/2023/poster/24019
PMLR链接:https://proceedings.mlr.press/v202/shin23e.html
代码:https://github.com/kaist-dmlab/CrossMatch
作者:Yooju Shin · Susik Yoon · Hwanjun Song · Dongmin Park · Byunghyun Kim · Jae-Gil Lee · Byung Suk Lee
机构:KAIST,伊利诺伊大学香槟分校(UIUC),亚马逊AI Lab(AWS AI Lab),佛蒙特大学(Vermont)
关键词:稀疏性,正则化
6. Sequential Multi-Dimensional Self-Supervised Learning for Clinical Time Series
大会论文链接:https://icml.cc/virtual/2023/poster/24132
PMLR链接:https://proceedings.mlr.press/v202/raghu23a.html
代码:https://github.com/aniruddhraghu/smd-ssl
作者:Aniruddh Raghu · Payal Chandak · Ridwan Alam · John Guttag · Collin Stultz
机构:MIT,哈佛-麻省理工健康科学技术项目(HST)
关键词:自监督、临床时序
7. SOM-CPC: Unsupervised Contrastive Learning with Self-Organizing Maps for Structured Representations of High-Rate Time Series
大会论文链接:https://icml.cc/virtual/2023/poster/24856
PMLR链接:https://proceedings.mlr.press/v202/huijben23a.html
代码:https://github.com/IamHuijben/SOM-CPC
作者:SeungHyun Kim · Hyunsu Kim · EungGu Yun · Hwangrae Lee · Jaehun Lee · Juho Lee
机构:埃因霍芬理工大学(tue),Onera Health,Sleep Medicine Center Kempenhaeghe
关键词:无监督,对比学习,高频时序
8. Prototype-oriented unsupervised anomaly detection for multivariate time series
大会论文链接:https://icml.cc/virtual/2023/poster/24139
PMLR链接:https://proceedings.mlr.press/v202/li23d.html
代码:https://github.com/LiYuxin321/PUAD
作者:yuxin li · Wenchao Chen · Bo Chen · Dongsheng Wang · Long Tian · Mingyuan Zhou
机构:西安电子科技大学,德克萨斯大学奥斯汀分校(utexas)
关键词:异常检测,多元时序,无监督
9. Learning Deep Time-index Models for Time Series Forecasting
大会论文链接:https://icml.cc/virtual/2023/poster/24424
PMLR链接:https://proceedings.mlr.press/v202/woo23b.html
代码:https://github.com/salesforce/DeepTime
作者:Gerald Woo · Chenghao Liu · Doyen Sahoo · Akshat Kumar · Steven Hoi
机构:Salesforce,新加坡管理大学(SMU)
关键词:时间序列预测,元学习
10. [Oral]Neural Continuous-Discrete State Space Models for Irregularly-Sampled Time Series
大会论文链接:https://icml.cc/virtual/2023/poster/24923
PMLR链接:https://proceedings.mlr.press/v202/ansari23a.html
代码:https://github.com/clear-nus/NCDSSM
作者:Abdul Fatir Ansari · Alvin Heng · Andre Lim · Harold Soh
关键词:不规则采样时间序列
11. [Oral]Self-Interpretable Time Series Prediction with Counterfactual Explanations
大会论文链接:https://icml.cc/virtual/2023/poster/23975
PMLR链接:https://proceedings.mlr.press/v202/yan23d.html
代码:https://github.com/Wang-ML-Lab/self-interpretable-time-series
作者:Jingquan Yan · Hao Wang
机构:罗格斯大学(Rutgers)
关键词:反事实,时间序列预测,可解释性
12. Learning Perturbations to Explain Time Series Predictions
大会论文链接:https://icml.cc/virtual/2023/poster/24182
PMLR链接:https://proceedings.mlr.press/v202/enguehard23a.html
代码:https://github.com/josephenguehard/time_interpret
作者:Joseph Enguehard(独立一个作者太牛了!)
机构:Babylon Health,Skippr, 99 Milton Keynes Business Centre
关键词:可解释性,时间序列预测
13. Feature Programming for Multivariate Time Series Prediction
大会论文链接:https://icml.cc/virtual/2023/poster/23862
PMLR链接:https://proceedings.mlr.press/v202/reneau23a.html
代码:https://github.com/SirAlex900/FeatureProgramming
作者:Alex Reneau · Jerry Yao-Chieh Hu · Ammar Gilani · Han Liu
机构:西北大学(Northwestern)
关键词:特征工程,多元时间序列预测
14. Theoretical Guarantees of Learning Ensembling Strategies with Applications to Time Series Forecasting
大会论文链接:https://icml.cc/virtual/2023/poster/24910
PMLR链接:https://proceedings.mlr.press/v202/hasson23a.html
作者:Hilaf Hasson · Danielle Robinson · Yuyang Wang · Gaurav Gupta · Youngsuk Park
关键词:集成学习,时间序列预测
15. Sequential Predictive Conformal Inference for Time Series
大会论文链接:https://icml.cc/virtual/2023/poster/24627
PMLR链接:https://proceedings.mlr.press/v202/xu23r
代码:https://github.com/hamrel-cxu/SPCI-code
作者:Chen Xu · Yao Xie
机构:佐治尼亚理工学院(Gatech)
关键词:共形预测,不确定性
16. Non-autoregressive Conditional Diffusion Models for Time Series Prediction
大会论文链接:https://icml.cc/virtual/2023/poster/25084
PMLR链接:https://proceedings.mlr.press/v202/shen23d.html
作者:Lifeng Shen · James Kwok
机构:香港科技大学(HKUST)
关键词:扩散模型,时间序列预测
17. Sequential Monte Carlo Learning for Time Series Structure Discovery
大会论文链接:https://icml.cc/virtual/2023/poster/24520
PMLR链接:https://proceedings.mlr.press/v202/saad23a.html
代码:https://github.com/probsys/AutoGP.jl(代码语言是Julia)
项目地址:https://probsys.github.io/AutoGP.jl/stable/
作者:Feras Saad · Brian Patton · Matthew Hoffman · Rif Saurous · Vikash Mansinghka
机构:卡耐基梅隆大学(CMU),Google,MIT
关键词:蒙特卡洛方法,高斯过程,时间序列结构发现
18. Domain Adaptation for Time Series Under Feature and Label Shifts
大会论文链接:https://icml.cc/virtual/2023/poster/23456
PMLR链接:https://proceedings.mlr.press/v202/he23b.html
代码:https://github.com/mims-harvard/Raincoat
作者:Huan He, Owen Queen, Teddy Koker, Consuelo Cuevas, Theodoros Tsiligkaridis, Marinka Zitnik
机构:哈佛大学(Harvard),MIT林肯实验室,
关键词:域适应,标签偏移,数据偏移,分布偏移
时空数据(spatial-temporal data)
时空的论文偏少,且3篇内容差异较大,就不显示词云了
19. NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with Spatial-temporal Decomposition
大会论文链接:https://icml.cc/virtual/2023/poster/23962
PMLR链接:https://proceedings.mlr.press/v202/huang23m.html
作者:Xinquan Huang · Wenlei Shi · Qi Meng · Yue Wang · Xiaotian Gao · Jia Zhang · Tie-Yan Liu
机构:阿卜杜拉国王科技大学(KAUST),微软亚洲研究院(MSRA)
关键词:神经偏微分方程,时空分解,AI4Science
20. Spatial Implicit Neural Representations for Global-Scale Species Mapping
大会论文链接:https://icml.cc/virtual/2023/poster/23767
PMLR链接:https://proceedings.mlr.press/v202/cole23a.html
代码:https://github.com/elijahcole/sinr
作者:Elijah Cole · Grant Horn · Christian Lange · Alexander Shepard · Patrick Leary · Pietro Perona · Scott Loarie · Oisin Mac Aodha
机构:加州理工学院(CalTech),康奈尔大学(Cornell),爱丁堡大学(Edinburgh),iNaturalist
关键词:地理信息,稀疏性,隐式神经表示
21. Spatial-Temporal Graph Learning with Adversarial Contrastive Adaptation
(可能是最像时空数据挖掘的一篇了)
大会论文链接:https://icml.cc/virtual/2023/poster/24346
PMLR链接:https://proceedings.mlr.press/v202/zhang23p.html
代码:https://github.com/HKUDS/GraphST
作者:Qianru Zhang · Chao Huang · Lianghao Xia · Zheng Wang · Siu Ming Yiu · Ruihua Han
机构:香港大学(HKU),南洋理工大学(NTU)
关键词:时空图预测、对比学习,图表示学习
相关链接
ICML2023接受论文:ICML 2023 Papers
ICML 2023 | 时间序列(Time Series)和时空数据(Spatial-Temporal)论文总结
ICLR 2024投稿时空数据论文汇总
NeurIPS 2023 时间序列(Time Series)论文总结
NeurIPS 2023 时空数据论文总结
KDD 2023 时空数据论文
VLDB 2023 时空&时序论文汇总
ICDE 2023 时空数据论文
WWW 2023 时空数据论文
ECML PKDD 2023 时空数据论文
CIKM 2023 时空数据论文总结
KDD 2023 时空数据论文
VLDB 2023 时空&时序论文汇总
ICDE 2023 时空数据论文
WWW 2023 时空数据论文
ECML PKDD 2023 时空数据论文
CIKM 2023 时空数据论文总结
🌟【紧跟前沿】“时空探索之旅”与你一起探索时空奥秘!🚀
欢迎大家关注时空探索之旅