代码随想录阅读笔记-字符串【实现 strStr()】

题目

实现 strStr() 函数。

给定一个 haystack 字符串和一个 needle 字符串,在 haystack 字符串中找出 needle 字符串出现的第一个位置 (从0开始)。如果不存在,则返回  -1。

示例 1: 输入: haystack = "hello", needle = "ll" 输出: 2

示例 2: 输入: haystack = "aaaaa", needle = "bba" 输出: -1

说明: 当 needle 是空字符串时,我们应当返回什么值呢?这是一个在面试中很好的问题。 对于本题而言,当 needle 是空字符串时我们应当返回 0 。这与C语言的 strstr() 以及 Java的 indexof() 定义相符。

思路 

本题是KMP 经典题目, KMP的经典思想就是:当出现字符串不匹配时,可以记录一部分之前已经匹配的文本内容,利用这些信息避免从头再去做匹配。本篇转自代码随想录,将以如下顺序来讲解KMP:

  • 什么是KMP
  • KMP有什么用
  • 什么是前缀表
  • 为什么一定要用前缀表
  • 如何计算前缀表
  • 前缀表与next数组
  • 使用next数组来匹配
  • 时间复杂度分析
  • 构造next数组
  • 使用next数组来做匹配
  • 前缀表统一减一 C++代码实现
  • 前缀表(不减一)C++实现
  • 总结

什么是KMP

KMP算法是一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt提出的,因此人们称它为克努特—莫里斯—普拉特操作(简称KMP算法)。KMP算法的核心是利用匹配失败后的信息,尽量减少模式串与主串的匹配次数以达到快速匹配的目的。具体实现就是通过一个next()函数实现,函数本身包含了模式串的局部匹配信息。KMP算法的时间复杂度O(m+n) 。

KMP有什么用

KMP主要应用在字符串匹配上。

KMP的主要思想是当出现字符串不匹配时,可以知道一部分之前已经匹配的文本内容,可以利用这些信息避免从头再去做匹配了。所以如何记录已经匹配的文本内容,是KMP的重点,也是next数组肩负的重任。

其实KMP的代码不好理解,一些人甚至直接把KMP代码的模板背下来。没有彻底搞懂,懵懵懂懂就把代码背下来太容易忘了。不仅面试的时候可能写不出来,如果面试官问:next数组里的数字表示的是什么,为什么这么表示?估计大多数候选人都是懵逼的。

什么是前缀表

写过KMP的人,一定都写过next数组,那么这个next数组究竟是个啥呢?

next数组就是一个前缀表(prefix table)。

前缀表有什么作用呢?

前缀表是用来回退的,它记录了模式串与主串(文本串)不匹配的时候,模式串应该从哪里开始重新匹配。

为了清楚地了解前缀表的来历,我们来举一个例子:

要在文本串:aabaabaafa 中查找是否出现过一个模式串:aabaaf。

请记住文本串和模式串的作用,对于理解下文很重要,要不然容易看懵。

如原文动画所示:

KMP详解1

动画里特意把 子串aa 标记上了,这是有原因的,大家先注意一下,后面还会说到。

可以看出,文本串中第六个字符b 和 模式串的第六个字符f,不匹配了。如果暴力匹配,发现不匹配,此时就要从头匹配了。

但如果使用前缀表,就不会从头匹配,而是从上次已经匹配的内容开始匹配,找到了模式串中第三个字符b继续开始匹配。

此时就要问了前缀表是如何记录的呢?

首先要知道前缀表的任务是当前位置匹配失败,找到之前已经匹配上的位置,再重新匹配,因此也意味着在某个字符失配时,前缀表会告诉你下一步匹配中,模式串应该跳到哪个位置。

那么什么是前缀表:记录下标i之前(包括i)的字符串中,有多大长度的相同前缀后缀。

最长公共前后缀

文章中字符串的前缀是指不包含最后一个字符的所有以第一个字符开头的连续子串

后缀是指不包含第一个字符的所有以最后一个字符结尾的连续子串

正确理解什么是前缀什么是后缀很重要!

那么网上清一色都说 “kmp 最长公共前后缀” 又是什么回事呢?

我查了一遍 算法导论 和 算法4里KMP的章节,都没有提到 “最长公共前后缀”这个词,也不知道从哪里来了,我理解是用“最长相等前后缀” 更准确一些。

因为前缀表要求的就是相同前后缀的长度。

而最长公共前后缀里面的“公共”,更像是说前缀和后缀公共的长度。这其实并不是前缀表所需要的。

所以字符串a的最长相等前后缀为0。 字符串aa的最长相等前后缀为1。 字符串aaa的最长相等前后缀为2。 等等.....。

为什么一定要用前缀表

这就是前缀表,那为啥就能告诉我们 上次匹配的位置,并跳过去呢?

回顾一下,刚刚匹配的过程在下标5的地方遇到不匹配,模式串是指向f,如图: 

KMP精讲1

然后就找到了下标2,指向b,继续匹配:如图: 

KMP精讲2

以下这句话,对于理解为什么使用前缀表可以告诉我们匹配失败之后跳到哪里重新匹配 非常重要!

下标5之前这部分的字符串(也就是字符串aabaa)的最长相等的前缀 和 后缀字符串是 子字符串aa ,因为找到了最长相等的前缀和后缀,匹配失败的位置是后缀子串的后面,那么我们找到与其相同的前缀的后面重新匹配就可以了。

所以前缀表具有告诉我们当前位置匹配失败,跳到之前已经匹配过的地方的能力。

很多介绍KMP的文章或者视频并没有把为什么要用前缀表?这个问题说清楚,而是直接默认使用前缀表。

如何计算前缀表

接下来就要说一说怎么计算前缀表。

如图:

KMP精讲5

长度为前1个字符的子串a,最长相同前后缀的长度为0。(注意字符串的前缀是指不包含最后一个字符的所有以第一个字符开头的连续子串后缀是指不包含第一个字符的所有以最后一个字符结尾的连续子串。)

KMP精讲6

长度为前2个字符的子串aa,最长相同前后缀的长度为1。

KMP精讲7

长度为前3个字符的子串aab,最长相同前后缀的长度为0。

以此类推: 长度为前4个字符的子串aaba,最长相同前后缀的长度为1。 长度为前5个字符的子串aabaa,最长相同前后缀的长度为2。 长度为前6个字符的子串aabaaf,最长相同前后缀的长度为0。

那么把求得的最长相同前后缀的长度就是对应前缀表的元素,如图: 

KMP精讲8

可以看出模式串与前缀表对应位置的数字表示的就是:下标i之前(包括i)的字符串中,有多大长度的相同前缀后缀。

再来看一下如何利用 前缀表找到 当字符不匹配的时候应该指针应该移动的位置。如动画所示:

KMP精讲2

找到的不匹配的位置, 那么此时我们要看它的前一个字符的前缀表的数值是多少。

为什么要前一个字符的前缀表的数值呢,因为要找前面字符串的最长相同的前缀和后缀。

所以要看前一位的 前缀表的数值。

前一个字符的前缀表的数值是2, 所以把下标移动到下标2的位置继续比配。 可以再反复看一下上面的动画。

最后就在文本串中找到了和模式串匹配的子串了。

前缀表与next数组

很多KMP算法的实现都是使用next数组来做回退操作,那么next数组与前缀表有什么关系呢?

next数组就可以是前缀表,但是很多实现都是把前缀表统一减一(右移一位,初始位置为-1)之后作为next数组。

为什么这么做呢,其实也是很多文章视频没有解释清楚的地方。

其实这并不涉及到KMP的原理,而是具体实现,next数组既可以就是前缀表,也可以是前缀表统一减一(右移一位,初始位置为-1)。

后面我会提供两种不同的实现代码,大家就明白了。

使用next数组来匹配

以下我们以前缀表统一减一之后的next数组来做演示

有了next数组,就可以根据next数组来 匹配文本串s,和模式串t了。

注意next数组是新前缀表(旧前缀表统一减一了)。

匹配过程动画如下:

KMP精讲4

时间复杂度分析

其中n为文本串长度,m为模式串长度,因为在匹配的过程中,根据前缀表不断调整匹配的位置,可以看出匹配的过程是O(n),之前还要单独生成next数组,时间复杂度是O(m)。所以整个KMP算法的时间复杂度是O(n+m)的。

暴力的解法显而易见是O(n × m),所以KMP在字符串匹配中极大地提高了搜索的效率。

为了和力扣题目28.实现strStr保持一致,方便大家理解,以下文章统称haystack为文本串, needle为模式串。

都知道使用KMP算法,一定要构造next数组。

构造next数组

我们定义一个函数getNext来构建next数组,函数参数为指向next数组的指针,和一个字符串。 代码如下:

void getNext(int* next, const string& s)

构造next数组其实就是计算模式串s,前缀表的过程。 主要有如下三步:

  1. 初始化
  2. 处理前后缀不相同的情况
  3. 处理前后缀相同的情况

接下来我们详解一下。

 1、初始化

定义两个指针i和j,j指向前缀末尾位置,i指向后缀末尾位置。然后还要对next数组进行初始化赋值,如下:

int j = -1;
next[0] = j;

j 为什么要初始化为 -1呢,因为之前说过 前缀表要统一减一的操作仅仅是其中的一种实现,我们这里选择j初始化为-1,下文我还会给出j不初始化为-1的实现代码。

next[i] 表示 i(包括i)之前最长相等的前后缀长度(其实就是j)

所以初始化next[0] = j 。

 2、处理前后缀不相同的情况

因为j初始化为-1,那么i就从1开始,进行s[i] 与 s[j+1]的比较。

所以遍历模式串s的循环下标i 要从 1开始,代码如下:

for (int i = 1; i < s.size(); i++) {

如果 s[i] 与 s[j+1]不相同,也就是遇到 前后缀末尾不相同的情况,就要向前回退。

怎么回退呢?

next[j]就是记录着j(包括j)之前的子串的相同前后缀的长度。

那么 s[i] 与 s[j+1] 不相同,就要找 j+1前一个元素在next数组里的值(就是next[j])。

所以,处理前后缀不相同的情况代码如下:

while (j >= 0 && s[i] != s[j + 1]) { // 前后缀不相同了
    j = next[j]; // 向前回退
}

 3、处理前后缀相同的情况

如果 s[i] 与 s[j + 1] 相同,那么就同时向后移动i 和j 说明找到了相同的前后缀,同时还要将j(前缀的长度)赋给next[i], 因为next[i]要记录相同前后缀的长度。

代码如下:

if (s[i] == s[j + 1]) { // 找到相同的前后缀
    j++;
}
next[i] = j;

最后整体构建next数组的函数代码如下:

void getNext(int* next, const string& s){
    int j = -1;
    next[0] = j;
    for(int i = 1; i < s.size(); i++) { // 注意i从1开始
        while (j >= 0 && s[i] != s[j + 1]) { // 前后缀不相同了
            j = next[j]; // 向前回退
        }
        if (s[i] == s[j + 1]) { // 找到相同的前后缀
            j++;
        }
        next[i] = j; // 将j(前缀的长度)赋给next[i]
    }
}

代码构造next数组的逻辑流程动画如下:

KMP精讲3

得到了next数组之后,就要用这个来做匹配了。

使用next数组来做匹配

在文本串s里 找是否出现过模式串t。

定义两个下标j 指向模式串起始位置,i指向文本串起始位置。

那么j初始值依然为-1,为什么呢? 依然因为next数组里记录的起始位置为-1。

i就从0开始,遍历文本串,代码如下:

for (int i = 0; i < s.size(); i++) 

接下来就是 s[i] 与 t[j + 1] (因为j从-1开始的) 进行比较。

如果 s[i] 与 t[j + 1] 不相同,j就要从next数组里寻找下一个匹配的位置。

代码如下:

while(j >= 0 && s[i] != t[j + 1]) {
    j = next[j];
}

如果 s[i] 与 t[j + 1] 相同,那么i 和 j 同时向后移动, 代码如下:

if (s[i] == t[j + 1]) {
    j++; // i的增加在for循环里
}

如何判断在文本串s里出现了模式串t呢,如果j指向了模式串t的末尾,那么就说明模式串t完全匹配文本串s里的某个子串了。

本题要在文本串字符串中找出模式串出现的第一个位置 (从0开始),所以返回当前在文本串匹配模式串的位置i 减去 模式串的长度,就是文本串字符串中出现模式串的第一个位置。

代码如下:

if (j == (t.size() - 1) ) {
    return (i - t.size() + 1);
}

那么使用next数组,用模式串匹配文本串的整体代码如下:

int j = -1; // 因为next数组里记录的起始位置为-1
for (int i = 0; i < s.size(); i++) { // 注意i就从0开始
    while(j >= 0 && s[i] != t[j + 1]) { // 不匹配
        j = next[j]; // j 寻找之前匹配的位置
    }
    if (s[i] == t[j + 1]) { // 匹配,j和i同时向后移动
        j++; // i的增加在for循环里
    }
    if (j == (t.size() - 1) ) { // 文本串s里出现了模式串t
        return (i - t.size() + 1);
    }
}

此时所有逻辑的代码都已经写出来了,力扣 28.实现strStr 题目的整体代码如下:

前缀表统一减一 C++代码实现

class Solution {
public:
    void getNext(int* next, const string& s) {
        int j = -1;
        next[0] = j;
        for(int i = 1; i < s.size(); i++) { // 注意i从1开始
            while (j >= 0 && s[i] != s[j + 1]) { // 前后缀不相同了
                j = next[j]; // 向前回退
            }
            if (s[i] == s[j + 1]) { // 找到相同的前后缀
                j++;
            }
            next[i] = j; // 将j(前缀的长度)赋给next[i]
        }
    }
    int strStr(string haystack, string needle) {
        if (needle.size() == 0) {
            return 0;
        }
        int next[needle.size()];
        getNext(next, needle);
        int j = -1; // // 因为next数组里记录的起始位置为-1
        for (int i = 0; i < haystack.size(); i++) { // 注意i就从0开始
            while(j >= 0 && haystack[i] != needle[j + 1]) { // 不匹配
                j = next[j]; // j 寻找之前匹配的位置
            }
            if (haystack[i] == needle[j + 1]) { // 匹配,j和i同时向后移动
                j++; // i的增加在for循环里
            }
            if (j == (needle.size() - 1) ) { // 文本串s里出现了模式串t
                return (i - needle.size() + 1);
            }
        }
        return -1;
    }
};

  • 时间复杂度: O(n + m)
  • 空间复杂度: O(m), 只需要保存字符串needle的前缀表

前缀表(不减一)C++实现

那么前缀表就不减一了,也不右移的,到底行不行呢?

我之前说过,这仅仅是KMP算法实现上的问题,如果就直接使用前缀表可以换一种回退方式,找j=next[j-1] 来进行回退。

主要就是j=next[x]这一步最为关键!

我给出的getNext的实现为:(前缀表统一减一)

void getNext(int* next, const string& s) {
    int j = -1;
    next[0] = j;
    for(int i = 1; i < s.size(); i++) { // 注意i从1开始
        while (j >= 0 && s[i] != s[j + 1]) { // 前后缀不相同了
            j = next[j]; // 向前回退
        }
        if (s[i] == s[j + 1]) { // 找到相同的前后缀
            j++;
        }
        next[i] = j; // 将j(前缀的长度)赋给next[i]
    }
}

此时如果输入的模式串为aabaaf,对应的next为-1 0 -1 0 1 -1。

这里j和next[0]初始化为-1,整个next数组是以 前缀表减一之后的效果来构建的。

那么前缀表不减一来构建next数组,代码如下:

    void getNext(int* next, const string& s) {
        int j = 0;
        next[0] = 0;
        for(int i = 1; i < s.size(); i++) {
            while (j > 0 && s[i] != s[j]) { // j要保证大于0,因为下面有取j-1作为数组下标的操作
                j = next[j - 1]; // 注意这里,是要找前一位的对应的回退位置了
            }
            if (s[i] == s[j]) {
                j++;
            }
            next[i] = j;
        }
    }

此时如果输入的模式串为aabaaf,对应的next为 0 1 0 1 2 0,(其实这就是前缀表的数值了)。

那么用这样的next数组也可以用来做匹配,代码要有所改动。

实现代码如下:

class Solution {
public:
    void getNext(int* next, const string& s) {
        int j = 0;
        next[0] = 0;
        for(int i = 1; i < s.size(); i++) {
            while (j > 0 && s[i] != s[j]) {
                j = next[j - 1];
            }
            if (s[i] == s[j]) {
                j++;
            }
            next[i] = j;
        }
    }
    int strStr(string haystack, string needle) {
        if (needle.size() == 0) {
            return 0;
        }
        int next[needle.size()];
        getNext(next, needle);
        int j = 0;
        for (int i = 0; i < haystack.size(); i++) {
            while(j > 0 && haystack[i] != needle[j]) {
                j = next[j - 1];
            }
            if (haystack[i] == needle[j]) {
                j++;
            }
            if (j == needle.size() ) {
                return (i - needle.size() + 1);
            }
        }
        return -1;
    }
};
  • 时间复杂度: O(n + m)
  • 空间复杂度: O(m)

总结

我们介绍了什么是KMP,KMP可以解决什么问题,然后分析KMP算法里的next数组,知道了next数组就是前缀表,再分析为什么要是前缀表而不是什么其他表。

接着从给出的模式串中,我们一步一步的推导出了前缀表,得出前缀表无论是统一减一还是不减一得到的next数组仅仅是kmp的实现方式的不同。

其中还分析了KMP算法的时间复杂度,并且和暴力方法做了对比。

然后先用前缀表统一减一得到的next数组,求得文本串s里是否出现过模式串t,并给出了具体分析代码。

又给出了直接用前缀表作为next数组,来做匹配的实现代码。

可以说把KMP的每一个细微的细节都扣了出来,毫无遮掩的展示给大家了!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/474670.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

可应用于工业控制器,新能源充电桩等众多涉及RS232通讯的产品的国产芯片——D3232,性价比高,交货周期短

D3232芯片主要用于工控主板、工业控制器、程序烧录下载器、仿真器、新能源充电桩等众多涉及RS232通讯的产品。 二、基本特性 D3232芯片由两个线路驱动器、两个线路接收器和双电荷泵电路组成&#xff0c;具有HBM>15kV、CDM>2kV的ESD保护能力&#xff0c;并且接收端输入电压…

javaweb遇到的servlet问题,jar包问题

有时候会遇到这种问题&#xff0c;有的地方会报红 这是因为这个找不到这个包&#xff0c;这个项目缺少jar包 在tomcat9之前还不是Jakarta这个名字&#xff0c;我的运行环境与服务器是jdk17与tomcat10 解决方法&#xff1a; 在项目结构中&#xff0c;找到模块&#xff0c;再…

HTTP Error 400. The request hostname is invalid.

异常信息 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN""http://www.w3.org/TR/html4/strict.dtd"> <HTML><HEAD><TITLE>Bad Request</TITLE> <META HTTP-EQUIV"Content-Type" Content"text/html;…

数据库系统概论-第15章 内存数据库管理系统

用内存的数据库&#xff0c;场景接触较少&#xff0c;不细看。 15.1 概述 15.2 内存数据库的发展历程 15.3 内存数据库的特性 15.4 内存数据库的关键技术 15.5 小结

实测国内AI大模型问答效果

随着ChatGPT热度的攀升&#xff0c;越来越多的公司也相继推出了自己的AI大模型。按照github工程awesome-LLMs-In-China所列举的&#xff0c;现如今国内AI大模型已达243个&#xff0c;比较著名的有文心一言、通义千问等。各大应用也开始内置AI玩法&#xff0c;如抖音的AI特效。下…

深度学习-2.9梯度不稳定和Glorot条件

梯度不稳定和Glorot条件 一、梯度消失和梯度爆炸 对于神经网络这个复杂系统来说&#xff0c;在模型训练过程中&#xff0c;一个最基础、同时也最常见的问题&#xff0c;就是梯度消失和梯度爆炸。 我们知道&#xff0c;神经网络在进行反向传播的过程中&#xff0c;各参数层的梯…

工大智信智能听诊智慧医疗的创新

智能听诊器&#xff0c;智慧医疗的新突破 工大智信智能听诊器是一款结合了先进技术和医疗专业知识的创新产品。它以其独特的优势&#xff0c;为医疗行业带来了前所未有的突破和变革。 传统听诊器依赖于医生的主观判断和经验&#xff0c;而工大智信智能听诊器采用了先进的传感技…

颠覆传统编程:Codigger极致体验之旅

在数字化浪潮汹涌的当下&#xff0c;编程已成为推动科技发展的重要引擎。而在这其中&#xff0c;极致编程体验无疑是每位开发者所追求的目标。它不仅代表着工具的高效能与稳定性&#xff0c;更映射出开发者在编程世界中的自由与创造力。Codigger&#xff0c;以其领先的开发框架…

LeetCode---388周赛

题目列表 3074. 重新分装苹果 3075. 幸福值最大化的选择方案 3076. 数组中的最短非公共子字符串 3077. K 个不相交子数组的最大能量值 一、重新分装苹果 注意题目中说同一个包裹中的苹果可以分装&#xff0c;那么我们只要关心苹果的总量即可&#xff0c;在根据贪心&#x…

【Linux Day16 I/O复用】

I/O复用 用途&#xff1a;I/O 复用能同时监听多个文件描述符。 I/O 复用虽然能同时监听多个文件描述符&#xff0c;但它本身是阻塞的。并且当多个文件描述符同时就绪时&#xff0c;如果不采取额外的措施&#xff0c;程序就只能按顺序依处理其中的每一个文件描述符&#xff0c;…

一些刷题需要用的大数据

无符号版本和有符号版本的区别就是有符号类型需要使用一个bit来表示数字的正负。 如果需声明无符号类型的话就需要在类型前加上unsigned。 整型的每一种都分为&#xff1a;无符号&#xff08;unsigned&#xff09;和有符号&#xff08;signed&#xff09;两种类型&#xff08;f…

8.测试教程-自动化测试selenium-3

文章目录 1.unittest框架解析2.批量执行脚本2.1构建测试套件2.2用例的执行顺序2.3忽略用例执行 3.unittest断言4.HTML报告生成5.异常捕捉与错误截图6.数据驱动 大家好&#xff0c;我是晓星航。今天为大家带来的是 自动化测试selenium第三节 相关的讲解&#xff01;&#x1f600…

提升企业内训效率:定制化企业培训APP开发教学

当下&#xff0c;定制化企业培训APP的开发成为提升企业内训效率的重要途径之一。接下来小编将深入讲解如何通过定制化企业培训APP来提升内训效率&#xff0c;并提供相关开发教学。 一、定制的重要性 灵活、便捷&#xff1a;定制化企业培训APP则能够使培训内容随时随地可用&…

Java代码基础算法练习-求给定3个数, 进行从小到大排序-2024.03.20

任务描述&#xff1a; 输入三个整数 x,y,z(0<x<1000&#xff0c;0<y<1000&#xff0c;0<z<1000)&#xff0c;请把这三个数由小到大输出。 任务要求&#xff1a; 代码示例&#xff1a; package march0317_0331;import java.util.Scanner;public class m24…

webpack5零基础入门-10babel的使用

Babel JavaScript 编译器。 主要用于将 ES6 语法编写的代码转换为向后兼容的 JavaScript 语法&#xff0c;以便能够运行在当前和旧版本的浏览器或其他环境中 1.安装相关包 npm install -D babel-loader babel/core babel/preset-env 2.进行相关配置 2.1第一种写法是在webp…

面向低成本线跟随机器人的PID控制器优化——文末源码

目录 介绍 测试 电子元器件 系统特征 控制器设计 位置误差的计算 比例控制 积分控制 微分控制 改进的PID控制器 测试轨迹 源码链接 本文对经典PID控制器的改进和开环控制机制的发展进行了讨论&#xff0c;以提高差动轮式机器人的稳定性和鲁棒性。为了部署该算法&am…

5G里面NR,gNB,en-gNB,ng-eNB是什么意思

不得不提一个国际组织&#xff0c;叫国际电信联盟(ITU, International Telecommunication Union)&#xff0c;简称国际电联。我们先看看国际电联的自我介绍&#xff1a; 国际电信联盟 『国际电联 (国际电信联盟) 是主管信息通信技术事务&#xff08;ICT&#xff09;的联合国机…

26-分支和循环语句_循环练习(上)

写代码的思路&#xff1a; 办法&#xff08;编程思维&#xff09;写代码&#xff08;按照语法形式写&#xff09; 编程思维&#xff1a;需要慢慢训练 1、计算n的阶乘 代码1&#xff1a; int main(){int i 1;int n 0;scanf("%d", &n);int ret 1;do{retret…

MyBatis核心配置文件:解锁数据之美的密码

MyBatis&#xff0c;这位编程的诗人&#xff0c;通过其独特的核心配置文件&#xff0c;为我们描绘出一幅数据之美的画卷。本篇博客将带你深入探讨MyBatis核心配置文件的奥秘&#xff0c;让你能够更好地理解和运用这个优雅的数据持久化框架。 最近想搞私域&#xff0c;欢迎各位…

Windows创建Linux虚拟环境-WSL

使用工具WSL 官方安装使用文档 安装 WSL | Microsoft Learn 开始通过 WSL 使用 VS Code | Microsoft Learn 具体过程 1. cmd以“管理员身份运行”&#xff0c;执行以下指令&#xff0c;安装完成后&#xff0c;电脑重启&#xff0c;安装完成生效。 wsl --install 2. 查看…