ResNet目标检测算法实现交通灯分类

红绿灯识别方案:https://zhuanlan.zhihu.com/p/674791906

目录

  • 一、制作数据集
  • 二、ResNet算法
  • 三、pytorch转onnx文件
  • 四、onnx推理测试
  • 五、onnx转mnn

一、制作数据集

1、数据集划分

将红绿灯数据集大文件夹中不同类别的小文件夹中的图片按照9:1进行划分,拆分后分别保存到train和val的文件中

import os
import shutil
import random


def split_dataset(source_folder, destination_folder, split_ratio=0.9):
    # 创建目标文件夹
    train_folder = os.path.join(destination_folder, 'train')
    val_folder = os.path.join(destination_folder, 'val')
    os.makedirs(train_folder, exist_ok=True)
    os.makedirs(val_folder, exist_ok=True)

    # 遍历每个类别的文件夹
    for class_folder in os.listdir(source_folder):
        class_path = os.path.join(source_folder, class_folder)

        # 创建类别的train和val子文件夹
        train_class_path = os.path.join(train_folder, class_folder)
        val_class_path = os.path.join(val_folder, class_folder)
        os.makedirs(train_class_path, exist_ok=True)
        os.makedirs(val_class_path, exist_ok=True)

        # 获取类别文件夹下的所有图片文件
        images = [f for f in os.listdir(class_path) if f.endswith('.jpg')]

        # 计算划分的索引
        split_index = int(len(images) * split_ratio)

        # 随机打乱图片列表
        random.shuffle(images)

        # 将图片拷贝到train文件夹
        for image in images[:split_index]:
            src_path = os.path.join(class_path, image)
            dst_path = os.path.join(train_class_path, image)
            shutil.copy(src_path, dst_path)

        # 将图片拷贝到val文件夹
        for image in images[split_index:]:
            src_path = os.path.join(class_path, image)
            dst_path = os.path.join(val_class_path, image)
            shutil.copy(src_path, dst_path)


if __name__ == "__main__":
    source_folder = "traffic_light"
    destination_folder = "dataset"
    split_dataset(source_folder, destination_folder)

二、ResNet算法

1、ResNet网络模型

model.py

import torch.nn as nn
import torch
 
 
# 定义ResNet18/34的残差结构,为2个3x3的卷积
class BasicBlock(nn.Module):
    # 判断残差结构中,主分支的卷积核个数是否发生变化,不变则为1
    expansion = 1
 
    # init():进行初始化,申明模型中各层的定义
    # downsample=None对应实线残差结构,否则为虚线残差结构
    def __init__(self, in_channel, out_channel, stride=1, downsample=None, **kwargs):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
                               kernel_size=3, stride=stride, padding=1, bias=False)
        # 使用批量归一化
        self.bn1 = nn.BatchNorm2d(out_channel)
        # 使用ReLU作为激活函数
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
                               kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channel)
        self.downsample = downsample
 
    # forward():定义前向传播过程,描述了各层之间的连接关系
    def forward(self, x):
        # 残差块保留原始输入
        identity = x
        # 如果是虚线残差结构,则进行下采样
        if self.downsample is not None:
            identity = self.downsample(x)
 
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        # -----------------------------------------
        out = self.conv2(out)
        out = self.bn2(out)
        # 主分支与shortcut分支数据相加
        out += identity
        out = self.relu(out)
 
        return out
 
 
# 定义ResNet50/101/152的残差结构,为1x1+3x3+1x1的卷积
class Bottleneck(nn.Module):
    # expansion是指在每个小残差块内,减小尺度增加维度的倍数,如64*4=256
    # Bottleneck层输出通道是输入的4倍
    expansion = 4
 
    # init():进行初始化,申明模型中各层的定义
    # downsample=None对应实线残差结构,否则为虚线残差结构,专门用来改变x的通道数
    def __init__(self, in_channel, out_channel, stride=1, downsample=None,
                 groups=1, width_per_group=64):
        super(Bottleneck, self).__init__()
 
        width = int(out_channel * (width_per_group / 64.)) * groups
 
        self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=width,
                               kernel_size=1, stride=1, bias=False)
        # 使用批量归一化
        self.bn1 = nn.BatchNorm2d(width)
        # -----------------------------------------
        self.conv2 = nn.Conv2d(in_channels=width, out_channels=width, groups=groups,
                               kernel_size=3, stride=stride, bias=False, padding=1)
        self.bn2 = nn.BatchNorm2d(width)
        # -----------------------------------------
        self.conv3 = nn.Conv2d(in_channels=width, out_channels=out_channel * self.expansion,
                               kernel_size=1, stride=1, bias=False)
        self.bn3 = nn.BatchNorm2d(out_channel * self.expansion)
        # 使用ReLU作为激活函数
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
 
    # forward():定义前向传播过程,描述了各层之间的连接关系
    def forward(self, x):
        # 残差块保留原始输入
        identity = x
        # 如果是虚线残差结构,则进行下采样
        if self.downsample is not None:
            identity = self.downsample(x)
 
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
 
        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
 
        out = self.conv3(out)
        out = self.bn3(out)
        # 主分支与shortcut分支数据相加
        out += identity
        out = self.relu(out)
 
        return out
 
 
# 定义ResNet类
class ResNet(nn.Module):
    # 初始化函数
    def __init__(self,
                 block,
                 blocks_num,
                 num_classes=28,
                 include_top=True,
                 groups=1,
                 width_per_group=64):
        super(ResNet, self).__init__()
        self.include_top = include_top
        # maxpool的输出通道数为64,残差结构输入通道数为64
        self.in_channel = 64
 
        self.groups = groups
        self.width_per_group = width_per_group
 
        self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
                               padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channel)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        # 浅层的stride=1,深层的stride=2
        # block:定义的两种残差模块
        # block_num:模块中残差块的个数
        self.layer1 = self._make_layer(block, 64, blocks_num[0])
        self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)
        self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)
        self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)
        if self.include_top:
            # 自适应平均池化,指定输出(H,W),通道数不变
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
            # 全连接层
            self.fc = nn.Linear(512 * block.expansion, num_classes)
        # 遍历网络中的每一层
        # 继承nn.Module类中的一个方法:self.modules(), 他会返回该网络中的所有modules
        for m in self.modules():
            # isinstance(object, type):如果指定对象是指定类型,则isinstance()函数返回True
            # 如果是卷积层
            if isinstance(m, nn.Conv2d):
                # kaiming正态分布初始化,使得Conv2d卷积层反向传播的输出的方差都为1
                # fan_in:权重是通过线性层(卷积或全连接)隐性确定
                # fan_out:通过创建随机矩阵显式创建权重
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
 
    # 定义残差模块,由若干个残差块组成
    # block:定义的两种残差模块,channel:该模块中所有卷积层的基准通道数。block_num:模块中残差块的个数
    def _make_layer(self, block, channel, block_num, stride=1):
        downsample = None
        # 如果满足条件,则是虚线残差结构
        if stride != 1 or self.in_channel != channel * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(channel * block.expansion))
 
        layers = []
        layers.append(block(self.in_channel,
                            channel,
                            downsample=downsample,
                            stride=stride,
                            groups=self.groups,
                            width_per_group=self.width_per_group))
        self.in_channel = channel * block.expansion
 
        for _ in range(1, block_num):
            layers.append(block(self.in_channel,
                                channel,
                                groups=self.groups,
                                width_per_group=self.width_per_group))
        # Sequential:自定义顺序连接成模型,生成网络结构
        return nn.Sequential(*layers)
 
    # forward():定义前向传播过程,描述了各层之间的连接关系
    def forward(self, x):
        # 无论哪种ResNet,都需要的静态层
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        # 动态层
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
 
        if self.include_top:
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)
 
        return x
 
# ResNet()中block参数对应的位置是BasicBlock或Bottleneck
# ResNet()中blocks_num[0-3]对应[3, 4, 6, 3],表示残差模块中的残差数
# 34层的resnet
def resnet34(num_classes=28, include_top=True):
    # https://download.pytorch.org/models/resnet34-333f7ec4.pth
    return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)
 
 
# 50层的resnet
def resnet50(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnet50-19c8e357.pth
    return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)
 
 
# 101层的resnet
def resnet101(num_classes=1000, include_top=True):
    # https://download.pytorch.org/models/resnet101-5d3b4d8f.pth
    return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)

2、数据集加载与训练

train.py

import os
import sys
import json
 
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms, datasets
from tqdm import tqdm
# 训练resnet34
from model import resnet34
 
 
def main():
    # 如果有NVIDA显卡,转到GPU训练,否则用CPU
    device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))
 
    data_transform = {
        # 训练
        # Compose():将多个transforms的操作整合在一起
        "train": transforms.Compose([
            # RandomResizedCrop(224):将给定图像随机裁剪为不同的大小和宽高比,然后缩放所裁剪得到的图像为给定大小
            transforms.RandomResizedCrop(224),
            # RandomVerticalFlip():以0.5的概率竖直翻转给定的PIL图像
            transforms.RandomHorizontalFlip(),
            # ToTensor():数据转化为Tensor格式
            transforms.ToTensor(),
            # Normalize():将图像的像素值归一化到[-1,1]之间,使模型更容易收敛
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
        # 验证
        "val": transforms.Compose([transforms.Resize(256),
                                   transforms.CenterCrop(224),
                                   transforms.ToTensor(),
                                   transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}
    # abspath():获取文件当前目录的绝对路径
    # join():用于拼接文件路径,可以传入多个路径
    # getcwd():该函数不需要传递参数,获得当前所运行脚本的路径
    data_root = os.path.abspath(os.getcwd())
    # 得到数据集的路径
    image_path = os.path.join(data_root, "data")
    # exists():判断括号里的文件是否存在,可以是文件路径
    # 如果image_path不存在,序会抛出AssertionError错误,报错为参数内容“ ”
    assert os.path.exists(image_path), "{} path does not exist.".format(image_path)
    train_dataset = datasets.ImageFolder(root=os.path.join(image_path, "train"),
                                         transform=data_transform["train"])
    # 训练集长度
    train_num = len(train_dataset)
 
    # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
    # class_to_idx:获取分类名称对应索引
    flower_list = train_dataset.class_to_idx
    # dict():创建一个新的字典
    # 循环遍历数组索引并交换val和key的值重新赋值给数组,这样模型预测的直接就是value类别值
    cla_dict = dict((val, key) for key, val in flower_list.items())
    # 把字典编码成json格式
    json_str = json.dumps(cla_dict, indent=4)
    # 把字典类别索引写入json文件
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)
 
    # 一次训练载入512张图像
    batch_size = 512
    # 确定进程数
    # min():返回给定参数的最小值,参数可以为序列
    # cpu_count():返回一个整数值,表示系统中的CPU数量,如果不确定CPU的数量,则不返回任何内容
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])
    print('Using {} dataloader workers every process'.format(nw))
    # DataLoader:将读取的数据按照batch size大小封装给训练集
    # dataset (Dataset):输入的数据集
    # batch_size (int, optional):每个batch加载多少个样本,默认: 1
    # shuffle (bool, optional):设置为True时会在每个epoch重新打乱数据,默认: False
    # num_workers(int, optional): 决定了有几个进程来处理,默认为0意味着所有的数据都会被load进主进程
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size, shuffle=True,
                                               num_workers=nw)
    # 加载测试数据集
    validate_dataset = datasets.ImageFolder(root=os.path.join(image_path, "val"),
                                            transform=data_transform["val"])
    # 测试集长度
    val_num = len(validate_dataset)
    validate_loader = torch.utils.data.DataLoader(validate_dataset,
                                                  batch_size=batch_size, shuffle=False,
                                                  num_workers=nw)
 
    print("using {} images for training, {} images for validation.".format(train_num,
                                                                           val_num))
 
    # 模型实例化
    net = resnet34()
    net.to(device)
    # 加载预训练模型权重
    # model_weight_path = "./resnet34-pre.pth"
    # exists():判断括号里的文件是否存在,可以是文件路径
    # assert os.path.exists(model_weight_path), "file {} does not exist.".format(model_weight_path)
    # net.load_state_dict(torch.load(model_weight_path, map_location='cpu'))
    # 输入通道数
    # in_channel = net.fc.in_features
    # 全连接层
    # net.fc = nn.Linear(in_channel, 5)
 
    # 定义损失函数(交叉熵损失)
    loss_function = nn.CrossEntropyLoss()
 
    # 抽取模型参数
    params = [p for p in net.parameters() if p.requires_grad]
    # 定义adam优化器
    # params(iterable):要训练的参数,一般传入的是model.parameters()
    # lr(float):learning_rate学习率,也就是步长,默认:1e-3
    optimizer = optim.Adam(params, lr=0.0001)
 
    # 迭代次数(训练次数)
    epochs = 100
    # 用于判断最佳模型
    best_acc = 0.0
    # 最佳模型保存地址
    save_path = './resNet34.pth'
    train_steps = len(train_loader)
    for epoch in range(epochs):
        # 训练
        net.train()
        running_loss = 0.0
        # tqdm:进度条显示
        train_bar = tqdm(train_loader, file=sys.stdout)
        # train_bar: 传入数据(数据包括:训练数据和标签)
        # enumerate():将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在for循环当中
        # enumerate返回值有两个:一个是序号,一个是数据(包含训练数据和标签)
        # x:训练数据(inputs)(tensor类型的),y:标签(labels)(tensor类型)
        for step, data in enumerate(train_bar):
            # 前向传播
            images, labels = data
            # 计算训练值
            logits = net(images.to(device))
            # 计算损失
            loss = loss_function(logits, labels.to(device))
            # 反向传播
            # 清空过往梯度
            optimizer.zero_grad()
            # 反向传播,计算当前梯度
            loss.backward()
            optimizer.step()
 
            # item():得到元素张量的元素值
            running_loss += loss.item()
 
            # 进度条的前缀
            # .3f:表示浮点数的精度为3(小数位保留3位)
            train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                                                     epochs,
                                                                     loss)
 
        # 测试
        # eval():如果模型中有Batch Normalization和Dropout,则不启用,以防改变权值
        net.eval()
        acc = 0.0
        # 清空历史梯度,与训练最大的区别是测试过程中取消了反向传播
        with torch.no_grad():
            val_bar = tqdm(validate_loader, file=sys.stdout)
            for val_data in val_bar:
                val_images, val_labels = val_data
                outputs = net(val_images.to(device))
                # torch.max(input, dim)函数
                # input是具体的tensor,dim是max函数索引的维度,0是每列的最大值,1是每行的最大值输出
                # 函数会返回两个tensor,第一个tensor是每行的最大值;第二个tensor是每行最大值的索引
                predict_y = torch.max(outputs, dim=1)[1]
                # 对两个张量Tensor进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回False
                # .sum()对输入的tensor数据的某一维度求和
                acc += torch.eq(predict_y, val_labels.to(device)).sum().item()
 
                val_bar.desc = "valid epoch[{}/{}]".format(epoch + 1,
                                                           epochs)
 
        val_accurate = acc / val_num
        print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
              (epoch + 1, running_loss / train_steps, val_accurate))
 
        # 保存最好的模型权重
        if val_accurate > best_acc:
            best_acc = val_accurate
            # torch.save(state, dir)保存模型等相关参数,dir表示保存文件的路径+保存文件名
            # model.state_dict():返回的是一个OrderedDict,存储了网络结构的名字和对应的参数
            torch.save(net.state_dict(), save_path)
 
    print('Finished Training')
 
 
if __name__ == '__main__':
    main()
  • 效果:

在这里插入图片描述

  • 生成的pth权重文件
    在这里插入图片描述

3、数据集分类测试

根据训练生成的pth权重文件预测
test.py

import os
import json
 
import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
 
from model import resnet34
 
 
def main():
    # 如果有NVIDA显卡,转到GPU训练,否则用CPU
    device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu")
 
    # 将多个transforms的操作整合在一起
    data_transform = transforms.Compose(
        [transforms.Resize(256),
         transforms.CenterCrop(224),
         transforms.ToTensor(),
         transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
 
    # 加载图片
    img_path = "./ResNet/data/test/composite/_17479_0.jpg"
    # 确定图片存在,否则反馈错误
    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path)
    # imshow():对图像进行处理并显示其格式,show()则是将imshow()处理后的函数显示出来
    plt.imshow(img)
    # [C, H, W],转换图像格式
    img = data_transform(img)
    # [N, C, H, W],增加一个维度N
    img = torch.unsqueeze(img, dim=0)
    plt.show()
    
    # 获取结果类型
    json_path = './ResNet/class_indices.json'
    # 确定路径存在,否则反馈错误
    assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)
    # 读取内容
    with open(json_path, "r") as f:
        class_indict = json.load(f)
 
    # 模型实例化,将模型转到device,结果类型有28种
    model = resnet34(num_classes=28).to(device)
 
    # 载入模型权重
    weights_path = "./ResNet/resNet34.pth"
    # 确定模型存在,否则反馈错误
    assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
    # 加载训练好的模型参数
    model.load_state_dict(torch.load(weights_path, map_location=device))
 
    # 进入验证阶段
    model.eval()
    with torch.no_grad():
        # 预测类别
        # squeeze():维度压缩,返回一个tensor(张量),其中input中大小为1的所有维都已删除
        output = torch.squeeze(model(img.to(device))).cpu()
        # softmax:归一化指数函数,将预测结果输入进行非负性和归一化处理,最后将某一维度值处理为0-1之内的分类概率
        predict = torch.softmax(output, dim=0)
        # argmax(input):返回指定维度最大值的序号
        # .numpy():把tensor转换成numpy的格式
        predict_cla = torch.argmax(predict).numpy()
 
    # 输出的预测值与真实值
    print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla)],
                                                 predict[predict_cla].numpy())
 
    # 图片标题
    plt.title(print_res)
    for i in range(len(predict)):
        print("class: {:10}   prob: {:.3}".format(class_indict[str(i)],
                                                  predict[i].numpy()))
    plt.show()
 
 
if __name__ == '__main__':
    main()

可视化展示:

在这里插入图片描述

三、pytorch转onnx文件

将model模型中的resnet34导入其中:

import torch
import torchvision
from model import *  # 引入模型

torch.set_grad_enabled(False)
torch_model = resnet34()  # 初始化网络
torch_model.load_state_dict(torch.load('./ResNet/resNet34.pth'), False)  # 加载训练好的pth模型
batch_size = 1  # 批处理大小
input_shape = (3, 224, 224)  # 输入数据,我这里是灰度训练所以1代表是单通道,RGB训练是3,224是图像输入网络的尺寸

# set the model to inference mode
torch_model.eval().cpu()  # cpu推理

x = torch.randn(batch_size, *input_shape).cpu()  # 生成张量
export_onnx_file = "resnet34_314.onnx"  # 要生成的ONNX文件名
torch.onnx.export(torch_model,
                  x,
                  export_onnx_file,
                  opset_version=10,
                  do_constant_folding=True,  # 是否执行常量折叠优化
                  input_names=["input"],  # 输入名
                  output_names=["output"],  # 输出名
                  dynamic_axes={"input": {0: "batch_size"},  # 批处理变量
                                "output": {0: "batch_size"}})

  • 生成的onnx权重文件
    在这里插入图片描述

四、onnx推理测试

import onnx
import onnxruntime as ort
import numpy as np
import cv2
def preprocess(img_data):
    mean_vec = np.array([0.485, 0.456, 0.406])
    stddev_vec = np.array([0.229, 0.224, 0.225])
    norm_img_data = np.zeros(img_data.shape).astype('float32')
    for i in range(img_data.shape[0]):
    # for each pixel in each channel, divide the value by 255 to get value between [0, 1] and then normalize
        norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i]
    return norm_img_data

def softmax(x):
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()


img = cv2.imread("./data/test/composite/00000136_0.jpg")
img = cv2.resize(img, (224,224), interpolation=cv2.INTER_AREA)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
input_data = np.transpose(img, (2, 0, 1))
input_data = preprocess(input_data)
input_data = input_data.reshape([1, 3, 224, 224])
sess = ort.InferenceSession("./ResNet/resnet34wsy.onnx")
input_name = sess.get_inputs()[0].name
result = sess.run([], {input_name: input_data})
result = np.reshape(result, [1, -1])
result_s = softmax(result)
index = np.argmax(result_s)
print("max index:", index)

五、onnx转mnn

方法一:

1、mnn下载地址

git clone https://github.com/alibaba/MNN

2、编译

cd MNN
./schema/generate.sh
mkdir build
cd build
camke .. -DMNN_BUILD_CONVERTER=true
make -j8

3、运行

根据自己的文件夹路径
./MNNConvert -f ONNX --modelFile XXX.onnx --MNNModel XXX.mnn --bizCode MNN

./MNNConvert -f ONNX --modelFile /home/mengwen/ResNet/traffic_light.onnx --MNNModel /home/mengwen/ResNet/traffic_light.mnn --bizCode MNN

方法二:

一键转换
地址:https://convertmodel.com/

在这里插入图片描述

2、
参考:
1、MNN框架学习(一):编译及使用
2、pytorch模型部署 pth转onnx
3、CNN经典网络模型(五):ResNet简介及代码实现(PyTorch超详细注释版)
4、ONNX格式模型转MNN格式模型

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/473770.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Flutter】文件选择器(file_picker)的用法

Flutter 没有提供内置的文件选择器,但社区内有人贡献了一个比较完整的解决方案——file_picker。 file_picker 的 API 简洁易用,支持全平台(Android / iOS / Mac / Linux / Windows),是我开发桌面应用时的首选。 这边…

MySql实战--一条SQL查询语句是如何执行的?

平时我们使用数据库,看到的通常都是一个整体。比如,你有个最简单的表,表里只有一个ID字段,在执行下面这个查询语句时: select * from T where ID10; 我们看到的只是输入一条语句,返回一个结果…

Chain of Note-CoN增强检索增强型语言模型的鲁棒性

Enhancing Robustness in Retrieval-Augmented Language Models 检索增强型语言模型(RALMs)在大型语言模型的能力上取得了重大进步,特别是在利用外部知识源减少事实性幻觉方面。然而,检索到的信息的可靠性并不总是有保证的。检索…

阿里云99元服务器40G ESSD Entry系统盘够用吗?

阿里云99元服务器40G ESSD Entry云盘够用吗?够用,操作系统占15GB左右,还有25G富余。如果是40G ESSD Entry系统盘不够用,还可以为云服务器另外挂载数据盘,所以不用担心40G系统盘不够用。可以在阿里云CLUB中心查看 aliyu…

基于SpringBoot实现WebSocket实时通讯的服务端和客户端

实现功能 服务端注册的客户端的列表;服务端向客户端发送广播消息;服务端向指定客户端发送消息;服务端向多个客户端发送消息;客户端给服务端发送消息; 效果: 环境 jdk:1.8 SpringBoot&#x…

some/ip CAN CANFD

关于SOME/IP的理解 在CAN总线的车载网络中,通信过程是面向信号的 当ECU的信号的值发生了改变,或者发送周期到了,就会发送消息,而不考虑接收者是否需要,这样就会造成总线上出现不必要的信息,占用了带宽 …

get_local_ip.bat:快速获取IPv4地址

批处理脚本,用于在Windows命令提示符下获取本地计算机的IPv4地址。 echo off ipconfig | findstr IPv4 pause - echo off:这会关闭命令提示符窗口中的命令回显,使得在运行脚本时不会显示每条命令的执行结果。 - ipconfig:这是一…

流畅的 Python 第二版(GPT 重译)(十三)

第二十四章:类元编程 每个人都知道调试比一开始编写程序要困难两倍。所以如果你在编写时尽可能聪明,那么你将如何调试呢? Brian W. Kernighan 和 P. J. Plauger,《编程风格的要素》 类元编程是在运行时创建或自定义类的艺术。在 P…

元素定位之xpath和css

元素定位 xpath绝对路径相对路径案例xpath策略(路径)案例xpath策略(层级、扩展)属性层级与属性层级与属性拓展层级与属性综合 csscss选择器(id、类、标签、属性)id选择器类选择器标签选择器属性选择器案例-…

按面积筛选填充二值图中的孔洞-python源码

目录 🙋🙋需求 🍅🍅解决方案 🙋🙋需求 前提条件是二值图中0是背景,255是前景。 二值化后的影像中有很多小孔洞,现在需要按孔洞面积进行筛选,填充面积小于阈值的孔洞&…

何恺明重提十年之争——模型表现好是源于能力提升还是捕获数据集偏见

2011年,知名学者Antonio Torralba和Alyosha Efros提出了“数据集偏差之战”,他们发现机器学习模型很容易“过拟合”到特定的数据集上,导致在其他数据集上表现不佳。过去十年,随着深度学习革命的到来,建立多样化、大规模、全面且尽…

三级数据库技术考点(详解!!)

1、 答疑:【解析】分布式数据库系统按不同层次提供的分布透明性有:分片透明性;②位置透明性;③局部映像透明性,位置透明性是指数据分片的分配位置对用户是透明的,用户编写程序时只需 要考虑数据分片情况,不需要了解各分片在各个场地的分配情…

GitHub配置SSH Key(详细版本)

GitHub配置SSH Key的目的是为了帮助我们在通过git提交代码是,不需要繁琐的验证过程,简化操作流程。比如新建的仓库可以下载, 但是提交需要账号密码。 步骤 一、设置git的user name和email 如果你是第一次使用,或者还没有配置过的话需要操作…

zookeeper底层细节

zk 临时节点和watch机制实现注册中心自动注册和发现,数据都在内存,nio 多线程模型; cp注重一致性,数据不一致时集群不可用 事务请求处理方式 1.all事务由唯一服务器处理 2.将客户端事务请求转成proposal分发follower 3.等待半…

基于Jenkins + Argo 实现多集群的持续交付

作者:周靖峰,青云科技容器顾问,云原生爱好者,目前专注于 DevOps,云原生领域技术涉及 Kubernetes、KubeSphere、Argo。 前文概述 前面我们已经掌握了如何通过 Jenkins Argo CD 的方式实现单集群的持续交付&#xff0c…

Maven,pom.xml,查找 子jar包

在IDEA打开pom.xml&#xff0c;会看到这里&#xff1a; 然后如果有需要&#xff0c;把相关的 子jar包 去掉 <dependency><groupId>XXX</groupId><artifactId>XXX</artifactId><exclusions><exclusion><artifactId>xxx</a…

Node.js核心命令与工具:提升开发效率的实用指南

&#x1f31f; 前言 欢迎来到我的技术小宇宙&#xff01;&#x1f30c; 这里不仅是我记录技术点滴的后花园&#xff0c;也是我分享学习心得和项目经验的乐园。&#x1f4da; 无论你是技术小白还是资深大牛&#xff0c;这里总有一些内容能触动你的好奇心。&#x1f50d; &#x…

HarmonyOS NEXT应用开发之Web组件预览PDF文件实现案例

介绍 本案例通过Web组件实现预览本地PDF文件和预览网络PDF文件&#xff0c;代码为Tabs容器组件包含了两个独立的TabContent子组件&#xff0c;分别标示为预览本地PDF文件和预览网络PDF文件。每个子组件内部构建一个Web组件。第一个Web组件利用resource协议关联本地PDF文件路径…

Docker系列

目录 练习&#xff1a;去DockerHub搜索并拉取一个Redis镜像 练习&#xff1a;去DockerHub搜索并拉取一个Redis镜像 目标&#xff1a; 1&#xff09;去DockerHub搜索Redis镜像 2&#xff09;查看Redis镜像的名称和版本 3&#xff09;利用docker pull命令拉取镜像 查看是否…

计算机网络简答题:复试+期末

文章目录 1.计算机网络的功能:2.计算机网络的分类:3.主机间的通信方式:4.电报交换、报文交换、分组交换的区别:5.计算机网络的性能指标:6.0SI模型和TCP/IP模型:7.通信信通的方式:8.端到端的通信与点到点通信的区别:9.同步通信和异步通信:10.频分复用、时分复用、波分复用和码分…