跟着cherno手搓游戏引擎【29】Batch简单合批

思路:

CPU和GPU都开辟同样大小的一大块内存(为了存储顶点信息)

索引在程序运行时生成对应规则后绑定到索引缓冲中

动态生成顶点信息(现在改成Drawquad只是确定图形顶点的位置)

然后在Endscene,将CPU的动态生成的顶点数据上传给GPU,然后再绘制出来

所以,就是根据所绘制的物体,动态生成索引缓冲区,然后根据索引缓冲区一次性绘制多个物体

实现:

Renderer2D.h:

#pragma once
#include "OrthographicCamera.h"
#include"Texture.h"
namespace YOTO {
	class Renderer2D
	{
	public:
		//为什么渲染器是静态的:
		static void Init();
		static void ShutDown();
		static void BeginScene(const OrthographicCamera& camera);
		static void EndScene();
		static void Flush();

		static void DrawQuad(const glm::vec2& position, const glm::vec2& size ,const glm::vec4& color);
		static void DrawQuad(const glm::vec3& position, const glm::vec2& size ,const glm::vec4& color);
		static void DrawQuad(const glm::vec2& position, const glm::vec2& size ,const Ref<Texture2D> texture,float tilingFactor=1.0f,const glm::vec4& tintColor=glm::vec4(1.0f));
		static void DrawQuad(const glm::vec3& position, const glm::vec2& size ,const Ref<Texture2D> texture,float tilingFactor=1.0f,const glm::vec4& tintColor=glm::vec4(1.0f));

		static void DrawRotatedQuad(const glm::vec2& position, const glm::vec2& size, float rotation,const glm::vec4& color);
		static void DrawRotatedQuad(const glm::vec3& position, const glm::vec2& size, float rotation,const glm::vec4& color);
		static void DrawRotatedQuad(const glm::vec2& position, const glm::vec2& size, float rotation,const Ref<Texture2D> texture, float tilingFactor = 1.0f,  const glm::vec4& tintColor = glm::vec4(1.0f));
		static void DrawRotatedQuad(const glm::vec3& position, const glm::vec2& size, float rotation,const Ref<Texture2D> texture, float tilingFactor = 1.0f, const glm::vec4& tintColor = glm::vec4(1.0f));
	};
}


Renderer2D.cpp:

#include "ytpch.h"
#include "Renderer2D.h"
#include"VertexArray.h"
#include"Shader.h"
//#include "Platform/OpenGL/OpenGLShader.h"
#include <glm/gtc/matrix_transform.hpp>
#include "RenderCommand.h"
namespace YOTO {
	/// <summary>
	/// 为什么QuadVertex的指针可以作为void*data传入glBufferSubData:
	/// SetLayout配置的就是这三个的顺序,因为glm内部用float实现
	/// 相当于前三个float是Position,之后四个float组成的Color,
	/// 最后是两个float组成的TexCoord
	/// </summary>
	struct QuadVertex {
		glm::vec3 Position;
		glm::vec4 Color;
		glm::vec2 TexCoord;
		//,纹理Id,
	};
	struct  Renderer2DData {
		const uint32_t MaxQuads = 10000;
		const uint32_t MaxVertices = MaxQuads * 4;
		const uint32_t MaxIndices = MaxQuads * 6;

		//顶点数组
		Ref<VertexArray> QuadVertexArray;
		//定带你缓冲
		Ref<VertexBuffer> QuadVertexBuffer;
		//Ref<Shader> FlatColorShader;
		//Shader
		Ref<Shader> TextureShader;
		//纹理
		Ref<Texture2D> WhiteTexture;
		//记录索引
		uint32_t QuadIndexCount =0;

		QuadVertex* QuadVertexBufferBase=nullptr;
		QuadVertex* QuadVertexBufferPtr= nullptr;
	};
	//CPU开辟的大内存
	static Renderer2DData s_Data;


	void Renderer2D::Init()
	{
		YT_PROFILE_FUNCTION();
		//---------------------顶点数组--------------------------
		//创建顶点数组
		s_Data.QuadVertexArray = VertexArray::Create();
		// 创建顶点缓冲区,先在GPU开辟一块s_Data.MaxVertices * sizeof(QuadVertex)大小的内存
		// 与cpu对应大,是为了传输顶点数据
		//---------------------顶点缓冲区--------------------------
		s_Data.QuadVertexBuffer =VertexBuffer::Create(s_Data.MaxVertices*sizeof(QuadVertex));
		s_Data.QuadVertexBuffer->SetLayout({
				{ShaderDataType::Float3,"a_Position"},
				{ShaderDataType::Float4,"a_Color"},
				{ShaderDataType::Float2,"a_TexCoord"}
			});
		//顶点数组添加顶点缓冲区,并且在这个缓冲区中设置布局
		s_Data.QuadVertexArray->AddVertexBuffer(s_Data.QuadVertexBuffer);


		// 在CPU开辟存储s_Data.MaxVertices个的QuadVertex的内存
		s_Data.QuadVertexBufferBase = new QuadVertex[s_Data.MaxVertices];
		
		//---------------------索引缓冲区--------------------------
		//开辟一块索引缓冲区
		uint32_t* quadIndices = new uint32_t[s_Data.MaxIndices];
		uint32_t offset = 0;	//配置索引
		for (uint32_t i = 0; i < s_Data.MaxIndices; i += 6) {
			quadIndices[i + 0] = offset + 0;
			quadIndices[i + 1] = offset + 1;
			quadIndices[i + 2] = offset + 2;

			quadIndices[i + 3] = offset + 2;
			quadIndices[i + 4] = offset + 3;
			quadIndices[i + 5] = offset + 0;
			offset += 4;
		}

		//创建索引缓冲区
		Ref<IndexBuffer> quardIB;
		quardIB =IndexBuffer::Create(quadIndices, s_Data.MaxIndices);
		s_Data.QuadVertexArray->AddIndexBuffer(quardIB);
		delete[] quadIndices;	// cpu上传到gpu上了可以删除cpu的索引数据块了

		//---------------------纹理--------------------------
		// 创建一个白色Texture
		s_Data.WhiteTexture = Texture2D::Create(1, 1);
		uint32_t whiteTextureData = 0xffffffff;
		s_Data.WhiteTexture->SetData(&whiteTextureData, sizeof(uint32_t));

		//---------------------着色器--------------------------
		//加载shader,并传入shader参数
		s_Data.TextureShader= Shader::Create("assets/shaders/Texture.glsl");
		s_Data.TextureShader->Bind();
		s_Data.TextureShader->SetInt("u_Texture", 0);



	}
	void Renderer2D::ShutDown()
	{
		YT_PROFILE_FUNCTION();
		//delete s_Data;
	}
	void Renderer2D::BeginScene(const OrthographicCamera& camera)
	{

		YT_PROFILE_FUNCTION();
		s_Data.TextureShader->Bind();
		s_Data.TextureShader->SetMat4("u_ViewProjection", camera.GetViewProjectionMatrix());
		// 相当于初始化此帧要绘制的索引数量,上传的顶点数据
		s_Data.QuadIndexCount = 0;
		//指针指向首部
		s_Data.QuadVertexBufferPtr = s_Data.QuadVertexBufferBase;
	}
	void Renderer2D::EndScene()
	{
		YT_PROFILE_FUNCTION();
		// 计算当前绘制需要多少个顶点数据,注意这里是8!!!!!!
		uint32_t dataSize = (uint8_t*)s_Data.QuadVertexBufferPtr - (uint8_t*)s_Data.QuadVertexBufferBase;
		// 截取部分CPU的顶点数据上传OpenGL,
		s_Data.QuadVertexBuffer->SetData(s_Data.QuadVertexBufferBase, dataSize);
		Flush();
	}
	void Renderer2D::Flush()
	{
		RenderCommand::DrawIndexed(s_Data.QuadVertexArray, s_Data.QuadIndexCount);
	}
	void Renderer2D::DrawQuad(const glm::vec2& position, const glm::vec2& size, const glm::vec4& color)
	{
		DrawQuad({ position.x,position.y,0.0f }, size, color);
	}
	void Renderer2D::DrawQuad(const glm::vec3& position, const glm::vec2& size, const glm::vec4& color)
	{
		YT_PROFILE_FUNCTION();
		//s_Data.FlatColorShader->Bind();
		//s_Data.FlatColorShader->SetFloat4("u_Color", color);
		//s_Data.TextureShader->Bind();

		s_Data.QuadVertexBufferPtr->Position = position;
		s_Data.QuadVertexBufferPtr->Color = color;
		s_Data.QuadVertexBufferPtr->TexCoord = {0.0f,0.0f};
		s_Data.QuadVertexBufferPtr++;

		s_Data.QuadVertexBufferPtr->Position = { position.x+size.x,position.y,0.0f};
		s_Data.QuadVertexBufferPtr->Color = color;
		s_Data.QuadVertexBufferPtr->TexCoord = { 1.0f,0.0f };
		s_Data.QuadVertexBufferPtr++;

		s_Data.QuadVertexBufferPtr->Position = { position.x + size.x,position.y + size.y,0.0f };
		s_Data.QuadVertexBufferPtr->Color = color;
		s_Data.QuadVertexBufferPtr->TexCoord = { 1.0f,1.0f };
		s_Data.QuadVertexBufferPtr++;

		s_Data.QuadVertexBufferPtr->Position = { position.x,position.y+size.y,0.0f };
		s_Data.QuadVertexBufferPtr->Color = color;
		s_Data.QuadVertexBufferPtr->TexCoord = { 0.0f,1.0f };
		s_Data.QuadVertexBufferPtr++;


		s_Data.QuadIndexCount += 6;
		/*s_Data.TextureShader->SetFloat4("u_Color", color);
		s_Data.TextureShader->SetFloat("m_TilingFactor", 1.0f);
		s_Data.WhiteTexture->Bind();*/

		//glm::mat4 transform = glm::translate(glm::mat4(1.0f), position) /**rotation*/ * glm::scale(glm::mat4(1.0f), {size.x,size.y,1.0f});
		//s_Data.TextureShader->SetMat4("u_Transform", transform);
		//s_Data.QuadVertexArray->Bind();
		//RenderCommand::DrawIndexed(s_Data.QuadVertexArray);
	}
	void Renderer2D::DrawQuad(const glm::vec2& position, const glm::vec2& size, const Ref<Texture2D> texture,  float tilingFactor, const glm::vec4& tintColor)
	{
		DrawQuad({ position.x,position.y,0.0f }, size, texture, tilingFactor, tintColor);
	}
	void Renderer2D::DrawQuad(const glm::vec3& position, const glm::vec2& size, const Ref<Texture2D> texture, float tilingFactor, const glm::vec4& tintColor)
	{
		YT_PROFILE_FUNCTION();
		//s_Data.TextureShader->Bind();
		s_Data.TextureShader->SetFloat4("u_Color", tintColor);
		s_Data.TextureShader->SetFloat("m_TilingFactor",tilingFactor);
		texture->Bind();


		glm::mat4 transform = glm::translate(glm::mat4(1.0f), position) /**rotation*/ * glm::scale(glm::mat4(1.0f), { size.x,size.y,1.0f });
		s_Data.TextureShader->SetMat4("u_Transform", transform);

		s_Data.QuadVertexArray->Bind();
		RenderCommand::DrawIndexed(s_Data.QuadVertexArray);
		
	}
	void Renderer2D::DrawRotatedQuad(const glm::vec2& position, const glm::vec2& size, float rotation, const glm::vec4& color)
	{
		DrawRotatedQuad({ position.x,position.y,0.0f }, size, rotation,color);
	}
	void Renderer2D::DrawRotatedQuad(const glm::vec3& position, const glm::vec2& size, float rotation, const glm::vec4& color)
	{
		YT_PROFILE_FUNCTION();

		s_Data.TextureShader->SetFloat4("u_Color", color);
		s_Data.TextureShader->SetFloat("m_TilingFactor", 1.0f);
		s_Data.WhiteTexture->Bind();

		glm::mat4 transform = glm::translate(glm::mat4(1.0f), position) * glm::rotate(glm::mat4(1.0f), rotation, {0.0f,0.0f,1.0f}) * glm::scale(glm::mat4(1.0f), { size.x,size.y,1.0f });
		s_Data.TextureShader->SetMat4("u_Transform", transform);
		s_Data.QuadVertexArray->Bind();
		RenderCommand::DrawIndexed(s_Data.QuadVertexArray);

	}
	void Renderer2D::DrawRotatedQuad(const glm::vec2& position, const glm::vec2& size, float rotation, const Ref<Texture2D> texture, float tilingFactor, const glm::vec4& tintColor)
	{
		DrawRotatedQuad({ position.x,position.y,0.0f }, size, rotation, texture, tilingFactor, tintColor);
	}
	void Renderer2D::DrawRotatedQuad(const glm::vec3& position, const glm::vec2& size, float rotation, const Ref<Texture2D> texture, float tilingFactor, const glm::vec4& tintColor)
	{
		YT_PROFILE_FUNCTION();
		//s_Data.TextureShader->Bind();
		s_Data.TextureShader->SetFloat4("u_Color", tintColor);
		s_Data.TextureShader->SetFloat("m_TilingFactor", tilingFactor);
		texture->Bind();


		glm::mat4 transform = glm::translate(glm::mat4(1.0f), position) * glm::rotate(glm::mat4(1.0f), rotation, { 0.0f,0.0f,1.0f }) * glm::scale(glm::mat4(1.0f), { size.x,size.y,1.0f });
		s_Data.TextureShader->SetMat4("u_Transform", transform);

		s_Data.QuadVertexArray->Bind();
		RenderCommand::DrawIndexed(s_Data.QuadVertexArray);
	}
}

Buffer.h:添加SetData和Create方法:

#pragma once
namespace YOTO {
	enum class ShaderDataType{
	None=0,
	Float,Float2,Float3,Float4,
	Mat3,Mat4,
	Int,Int2,Int3,Int4,
	Bool,
	};
	static uint32_t  ShaderDataTypeSize(ShaderDataType type) {
		switch (type)
		{
		case YOTO::ShaderDataType::Float:
			return 4;
			break;
		case YOTO::ShaderDataType::Float2:
			return 4*2;
			break;
		case YOTO::ShaderDataType::Float3:
			return 4*3;
			break;
		case YOTO::ShaderDataType::Float4:
			return 4*4;
			break;
		case YOTO::ShaderDataType::Mat3:
			return 4*3*3;
			break;
		case YOTO::ShaderDataType::Mat4:
			return 4*4*4;
			break;
		case YOTO::ShaderDataType::Int:
			return 4;
			break;
		case YOTO::ShaderDataType::Int2:
			return 4*2;
			break;
		case YOTO::ShaderDataType::Int3:
			return 4*3;
			break;
		case YOTO::ShaderDataType::Int4:
			return 4*4;
			break;
		case YOTO::ShaderDataType::Bool:
			return 1;
			break;
		}
		YT_CORE_ASSERT(false, "未知的ShaderDataType!");
		return 0;
	}
	struct BufferElement {
		std::string Name;
		ShaderDataType Type;
		uint32_t Size;
		uint32_t Offset;
		bool Normalized;
		BufferElement(){}
		BufferElement(ShaderDataType type, const std::string& name,bool normalized=false)
			:Name(name), Type(type), Size(ShaderDataTypeSize(type)), Offset(0), Normalized(normalized){}
		uint32_t GetComponentCount() const{
			switch (Type)
			{
			case YOTO::ShaderDataType::Float:
				return 1;
				break;
			case YOTO::ShaderDataType::Float2:
				return 2;
				break;
			case YOTO::ShaderDataType::Float3:
				return 3;
				break;
			case YOTO::ShaderDataType::Float4:
				return 4;
				break;
			case YOTO::ShaderDataType::Mat3:
				return 3*3;
				break;
			case YOTO::ShaderDataType::Mat4:
				return 4*4;
				break;
			case YOTO::ShaderDataType::Int:
				return 1;
				break;
			case YOTO::ShaderDataType::Int2:
				return 2;
				break;
			case YOTO::ShaderDataType::Int3:
				return 3;
				break;
			case YOTO::ShaderDataType::Int4:
				return 4;
				break;
			case YOTO::ShaderDataType::Bool:
				return 1;
				break;
			default:
				break;
			}
			YT_CORE_ASSERT(false, "未知的ShaderDataType!");
			return 0;
		}
	};
	class BufferLayout {
	public:
		BufferLayout(){}
		BufferLayout(const std::initializer_list<BufferElement>elements)
			:m_Elements(elements) 
		{
			CalculateOffsetAndStride();
		} 
		inline uint32_t GetStride()const { return m_Stride; }
		inline const std::vector<BufferElement>& GetElements()const {
			return m_Elements;
		}
		std::vector<BufferElement>::iterator begin() { return m_Elements.begin(); }
		std::vector<BufferElement>::iterator end() { return m_Elements.end(); }
		std::vector<BufferElement>::const_iterator begin() const { return m_Elements.begin(); }
		std::vector<BufferElement>::const_iterator end() const { return m_Elements.end(); }
	private:
		void CalculateOffsetAndStride() {
			uint32_t offset = 0;
			m_Stride = 0;
			for (auto& element : m_Elements) {
				element.Offset = offset;
				offset += element.Size;
				m_Stride += element.Size;
			}
		}
	private:
		std::vector<BufferElement> m_Elements;
		uint32_t m_Stride = 0;
	};
	class VertexBuffer {
	public:
		virtual~VertexBuffer() {}

		virtual void Bind() const = 0;
		virtual void UnBind() const = 0;

		virtual void SetData(const void* data, uint32_t size) = 0;

		virtual void SetLayout(const BufferLayout& layout) = 0;
		virtual const BufferLayout& GetLayout()const = 0;
		

		static  Ref<VertexBuffer> Create(float* vertices, uint32_t size);
		static  Ref<VertexBuffer> Create(uint32_t size);
	};
	/// <summary>
	/// 目前索引仅支持32位的索引缓冲区
	/// </summary>
	class IndexBuffer {
	public:
		virtual~IndexBuffer(){}
		virtual void Bind() const = 0;
		virtual void UnBind() const = 0;
		virtual uint32_t GetCount() const = 0;
		static  Ref<IndexBuffer> Create(uint32_t* indices, uint32_t count);

	};
}

Buffer.cpp:

#include"ytpch.h"
#include"Buffer.h"
#include "Renderer.h"

#include "Platform/OpenGL/OpenGLBuffer.h"

namespace YOTO {

	Ref<VertexBuffer> VertexBuffer::Create(uint32_t size)
	{
		switch (Renderer::GetAPI())
		{
		case RendererAPI::API::None:
			YT_CORE_ASSERT(false, "Buffer:API为None不支持");
			return nullptr;
		case RendererAPI::API::OpenGL:
			return std::make_shared<OpenGLVertexBuffer>(size);
		}
		YT_CORE_ASSERT(false, "Buffer:未知API");
		return nullptr;
	}
	Ref<VertexBuffer> VertexBuffer::Create(float* vertices, uint32_t size)
	{
		switch (Renderer::GetAPI())
		{
		case RendererAPI::API::None:
			YT_CORE_ASSERT(false,"Buffer:API为None不支持");
			return nullptr;
		case RendererAPI::API::OpenGL:
			return std::make_shared<OpenGLVertexBuffer>(vertices,size);
		}
		YT_CORE_ASSERT(false,"Buffer:未知API");
		return nullptr;
	}

	Ref<IndexBuffer> IndexBuffer::Create(uint32_t* indices, uint32_t count)
	{
		switch (Renderer::GetAPI())
		{
		case RendererAPI::API::None:
			YT_CORE_ASSERT(false, "Buffer:API为None不支持");
			return nullptr;
		case RendererAPI::API::OpenGL:
			return std::make_shared < OpenGLIndexBuffer>(indices, count);
		}
		YT_CORE_ASSERT(false, "Buffer:未知API");
		return nullptr;
	}

}

OpenGLBuffer.cpp: 实现继承自Buffer的方法

#include"ytpch.h"
#include"OpenGLBuffer.h"
#include <glad/glad.h>
namespace YOTO {

	
	// VertexBuffer 
	

	OpenGLVertexBuffer::OpenGLVertexBuffer(uint32_t size)
	{
		YT_PROFILE_FUNCTION();
		glCreateBuffers(1, &m_RendererID);
		glBindBuffer(GL_ARRAY_BUFFER, m_RendererID);
		glBufferData(GL_ARRAY_BUFFER, size, nullptr, GL_DYNAMIC_DRAW);
	}
	OpenGLVertexBuffer::OpenGLVertexBuffer(float* vertices, uint32_t size)
	{	 
		YT_PROFILE_FUNCTION();
		glCreateBuffers(1, &m_RendererID);
		glBindBuffer(GL_ARRAY_BUFFER, m_RendererID);
		glBufferData(GL_ARRAY_BUFFER, size, vertices, GL_STATIC_DRAW);
	}
	OpenGLVertexBuffer::~OpenGLVertexBuffer()
	{
		YT_PROFILE_FUNCTION();
		glDeleteBuffers(1, &m_RendererID);
	}
	void OpenGLVertexBuffer::Bind() const
	{
		YT_PROFILE_FUNCTION();
		glBindBuffer(GL_ARRAY_BUFFER, m_RendererID);
	}
	void OpenGLVertexBuffer::UnBind() const
	{
		glBindBuffer(GL_ARRAY_BUFFER, 0);
	}

	void OpenGLVertexBuffer::SetData(const void* data, uint32_t size)
	{
		glBindBuffer(GL_ARRAY_BUFFER, m_RendererID);
		// 用来更新一个已有缓冲区对象中的一部分数据,
		//data:一个指向新数据源的指针,将新的数据源拷贝到缓冲区对象中完成更新
		glBufferSubData(GL_ARRAY_BUFFER,0,size,data);
	}

	
	// IndexBuffer /
	
	OpenGLIndexBuffer::OpenGLIndexBuffer(uint32_t* indices, uint32_t count)
		:m_Count(count)
	{
		YT_PROFILE_FUNCTION();
		glCreateBuffers(1, &m_RendererID);
		glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_RendererID);
		glBufferData(GL_ELEMENT_ARRAY_BUFFER, count*sizeof(uint32_t), indices, GL_STATIC_DRAW);
	}
	OpenGLIndexBuffer::~OpenGLIndexBuffer()
	{
		YT_PROFILE_FUNCTION();
		glDeleteBuffers(1, &m_RendererID);
	}
	void OpenGLIndexBuffer::Bind() const
	{
		YT_PROFILE_FUNCTION();
		glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, m_RendererID);
	}
	void OpenGLIndexBuffer::UnBind() const
	{
		YT_PROFILE_FUNCTION();
		glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
	}
}

RenderAPI.h:创建DrawIndexed方法根据索引绘制图像:

#pragma once
#include<glm/glm.hpp>
#include "VertexArray.h"
namespace YOTO {
	class RendererAPI
	{
	public:
		enum class API {
			None = 0,
			OpenGL = 1
		};
	public:
		virtual void Init() = 0;
		virtual void SetClearColor(const glm::vec4& color)=0;
		virtual void SetViewport(uint32_t x, uint32_t y, uint32_t width, uint32_t height) = 0;
		virtual void Clear() = 0;
		virtual void DrawIndexed(const Ref<VertexArray>& vertexArray,uint32_t indexCount = 0)=0;

		inline static API GetAPI() { return s_API; }
	private:
		static API s_API;
	};
}


OpenGLRendererAPI.cpp: 

#include "ytpch.h"
#include "OpenGLRendererAPI.h"
#include <glad/glad.h>
namespace YOTO {
	void OpenGLRendererAPI::Init()
	{
		YT_PROFILE_FUNCTION();
		//启用混合
		glEnable(GL_BLEND);
		//设置混合函数
		glBlendFunc(GL_SRC_ALPHA,GL_ONE_MINUS_SRC_ALPHA);
		//深度测试
		glEnable(GL_DEPTH_TEST);
	}
	void OpenGLRendererAPI::SetViewport(uint32_t x, uint32_t y, uint32_t width, uint32_t height)
	{
		glViewport(x, y, width, height);
	}
	void OpenGLRendererAPI::SetClearColor(const glm::vec4& color)
	{
		glClearColor(color.r, color.g, color.b, color.a);
	}
	void OpenGLRendererAPI::Clear()
	{
		glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
	}
	void OpenGLRendererAPI::DrawIndexed(const Ref<VertexArray>& vertexArray, uint32_t indexCount)
	{
		uint32_t count = indexCount ? vertexArray->GetIndexBuffer()->GetCount() : indexCount;
		glDrawElements(GL_TRIANGLES, count, GL_UNSIGNED_INT, nullptr);
		glBindTexture(GL_TEXTURE_2D, 0);
	}
}

RenderCommand.h: 对API的DrawIndexed封装:

#pragma once
#include"RendererAPI.h"
namespace YOTO {
	class RenderCommand
	{
	public:
		inline static void Init() {
			s_RendererAPI->Init();
		}
		inline static void SetViewport(uint32_t x, uint32_t y, uint32_t width, uint32_t height) {
			s_RendererAPI->SetViewport(x,y,width,height);
		}

		inline static void SetClearColor(const glm::vec4& color) {
			s_RendererAPI->SetClearColor(color);
		}
		inline static void Clear() {
			s_RendererAPI->Clear();
		}
		inline static void DrawIndexed(const Ref<VertexArray>& vertexArray,uint32_t count=0) {
			s_RendererAPI->DrawIndexed(vertexArray, count);
		}
		
	private:
		static RendererAPI* s_RendererAPI;

	};

}

 调用:

Texture.glsl:先改下shader

#type vertex
#version 330 core

layout(location = 0) in vec3 a_Position;
layout(location = 1) in vec4 a_Color;
layout(location = 2) in vec2 a_TexCoord;

uniform mat4 u_ViewProjection;
// uniform mat4 u_Transform;

out vec4 v_Color;
out vec2 v_TexCoord;

void main() {
	v_Color = a_Color;
	v_TexCoord = a_TexCoord;
    // 由规则动态生成的顶点位置(基于本地空间)没有涉及transform变换顶点位置
    // gl_Position = u_ViewProjection * u_Transform * vec4(a_Position, 1.0); 
	gl_Position = u_ViewProjection * vec4(a_Position, 1.0);
}
#type fragment
#version 330 core

layout(location = 0) out vec4 color;

in vec4 v_Color;
in vec2 v_TexCoord;

uniform vec4 u_Color;
uniform float u_TilingFactor;

uniform sampler2D u_Texture;

void main() {
	color = v_Color;
}

Sandbox2D.cpp:

#include "Sandbox2D.h"
#include <imgui/imgui.h>
#include <glm/gtc/matrix_transform.hpp>
//#include <Platform/OpenGL/OpenGLShader.h>
#include <glm/gtc/type_ptr.hpp>
#include<vector>
#include<chrono>
template<typename Fn>
class Timer {
public:
	Timer(const char* name, Fn&&func)
		:m_Name(name),m_Func(func),m_Stopped(false)
	{
		m_StartTimepoint = std::chrono::high_resolution_clock::now();
	}
	~Timer() {
		if (!m_Stopped) {
			Stop();
		}
	}
	void Stop() {
		auto endTimepoint= std::chrono::high_resolution_clock::now();
		long long start = std::chrono::time_point_cast<std::chrono::microseconds>(m_StartTimepoint).time_since_epoch().count();
		long long end = std::chrono::time_point_cast<std::chrono::microseconds>(endTimepoint).time_since_epoch().count();
		m_Stopped = true;
		float duration = (end - start)*0.001f;
		m_Func({m_Name,duration});
		//std::cout << "Timer:"<< m_Name << "时差:" << duration << "ms" << std::endl;
	}
private:
	const char* m_Name;
	std::chrono::time_point<std::chrono::steady_clock>m_StartTimepoint;
	bool m_Stopped;
	Fn m_Func;
};
//未找到匹配的重载:auto的问题,改回原来的类型就好了
#define PROFILE_SCOPE(name) Timer timer##__LINE__(name,[&](ProfileResult profileResult) {m_ProfileResults.push_back(profileResult);})
Sandbox2D::Sandbox2D()
:Layer("Sandbox2D"), m_CameraController(1280.0f / 720.0f, true) 
{
}
void Sandbox2D::OnAttach()
{
	YT_PROFILE_FUNCTION();
	m_CheckerboardTexture = YOTO::Texture2D::Create("assets/textures/Checkerboard.png");

}
void Sandbox2D::OnDetach()
{
	YT_PROFILE_FUNCTION();
}

void Sandbox2D::OnUpdate(YOTO::Timestep ts)
{
	YT_PROFILE_FUNCTION();
		//update
		m_CameraController.OnUpdate(ts);
	
	
	{
		YT_PROFILE_SCOPE("Sandbox2D::Renderer Prep");
		//Render
		YOTO::RenderCommand::SetClearColor({ 0.2f, 0.2f, 0.2f, 1.0f });
		YOTO::RenderCommand::Clear();
	}
	
	{
		YT_PROFILE_SCOPE("Sandbox2D::Renderer Draw");
		YOTO::Renderer2D::BeginScene(m_CameraController.GetCamera());
		{
	/*		static glm::mat4 scale = glm::scale(glm::mat4(1.0f), glm::vec3(0.1f));
			glm::vec4  redColor(0.8f, 0.3f, 0.3f, 1.0f);
			glm::vec4  blueColor(0.2f, 0.3f, 0.8f, 1.0f);*/


			/*std::dynamic_pointer_cast<YOTO::OpenGLShader>(m_FlatColorShader)->Bind();
			std::dynamic_pointer_cast<YOTO::OpenGLShader>(m_FlatColorShader)->UploadUniformFloat4("u_Color", m_SquareColor);
			YOTO::Renderer::Submit(m_FlatColorShader, m_SquareVA, glm::scale(glm::mat4(1.0f), glm::vec3(1.5f)));*/

		//	YOTO::Renderer2D::DrawRotatedQuad({ -1.0f,0.0f }, { 0.8f,0.8f }, glm::radians(45.0f),{ 0.8f,0.2f,0.3f,1.0f });
			YOTO::Renderer2D::DrawQuad({ -1.0f,0.0f }, { 0.8f,0.8f }, { 0.8f,0.2f,0.3f,1.0f });
			YOTO::Renderer2D::DrawQuad({ 0.5f,-0.5f }, { 0.5f,0.75f }, { 0.2f,0.3f,0.8f,1.0f });
			//YOTO::Renderer2D::DrawQuad({ 0.0f,0.0f,-0.1f }, { 10.0f,10.0f }, m_CheckerboardTexture,10.0f,glm::vec4(1.0f,0.9f,0.9f,1.0f));
			YOTO::Renderer2D::EndScene();
		}
	}
	
}
void Sandbox2D::OnImGuiRender()
{
	YT_PROFILE_FUNCTION();
	ImGui::Begin("Setting");
	ImGui::ColorEdit4("Color", glm::value_ptr(m_SquareColor));
	for (auto& res : m_ProfileResults) {
		char lable[50];
		strcpy(lable, "%.3fms  ");
		strcat(lable, res.Name);
		ImGui::Text(lable, res.Time);
	}
	m_ProfileResults.clear();
	ImGui::End();
}

void Sandbox2D::OnEvent(YOTO::Event& e)
{
	YT_PROFILE_FUNCTION();
	m_CameraController.OnEvent(e);
}

cool! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/472842.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

零基础入门数据挖掘系列之「建模调参」

摘要&#xff1a;对于数据挖掘项目&#xff0c;本文将学习如何建模调参&#xff1f;从简单的模型开始&#xff0c;如何去建立一个模型&#xff1b;如何进行交叉验证&#xff1b;如何调节参数优化等。 建模调参&#xff1a;特征工程也好&#xff0c;数据清洗也罢&#xff0c;都是…

EtherCAT运动控制器在LabVIEW中的运动控制与实时数据采集

本文以正运动技术EtherCAT运动控制器ZMC408CE为例&#xff0c;介绍如何使用LabVIEW对控制器参数进行获取内容并生成示波器波形。 一、ZMC408CE硬件介绍 ZMC408CE是正运动推出的一款多轴高性能EtherCAT总线运动控制器&#xff0c;具有EtherCAT、EtherNET、RS232、CAN和U盘等通…

STM32相关资料汇总

STM32选型表 STM32手册参考网站 https://www.stmcu.org.cn/

Python 深度学习第二版(GPT 重译)(四)

九、高级计算机视觉深度学习 本章涵盖 计算机视觉的不同分支&#xff1a;图像分类、图像分割、目标检测 现代卷积神经网络架构模式&#xff1a;残差连接、批量归一化、深度可分离卷积 可视化和解释卷积神经网络学习的技术 上一章通过简单模型&#xff08;一堆Conv2D和MaxP…

Linux:Prometheus的源码包安装及操作(2)

环境介绍 三台centos 7系统&#xff0c;运行内存都2G 1.prometheus监控服务器&#xff1a;192.168.6.1 主机名&#xff1a;pm 2.grafana展示服务器:192.168.6.2 主机名&#xff1a;gr 3.被监控服务器&#xff1a;192.168.6.3 …

uniapp开发h5项目使用baidu-map组件实现地图引入,定位渲染,弹窗功能实现,根据定位路线图的实现

1.效果图 2.准备工作 cnpm install vue-baidu-map --save 在main.js中全局引入 import BaiduMap from vue-baidu-map Vue.use(BaiduMap, {// ak 是在百度地图开发者平台申请的密钥 详见 http://lbsyun.baidu.com/apiconsole/key */ak: sRDDfAKpCSG5iF1rvwph4Q95M6tDCApL }) …

DNA存储技术原理是什么?

随着大数据和人工智能的发展&#xff0c;全球每天产生的数据量剧增&#xff0c;对存储设备的需求也随之增长&#xff0c;数据存储问题日益凸显。传统的硬盘驱动器&#xff08;HDD&#xff09;、磁带等冷存和深度归档存储占据数据中心存储的60-70%&#xff0c;由于它们的访问频率…

服务器数据恢复—异常断电导致服务器磁盘阵列崩溃的数据恢复案例

服务器数据恢复环境&故障&#xff1a; 由于机房多次断电导致一台服务器中raid阵列信息丢失。该阵列中存放的是文档&#xff0c;上层安装的是Windows server操作系统&#xff0c;没有配置ups。 因为服务器异常断电重启后&#xff0c;raid阵列可以正常使用&#xff0c;所以未…

Swift 从获取所有 NSObject 对象聊起:ObjC、汇编语言以及底层方法调用链(一)

概览 Swift 语言给我们的印象是&#xff1a;简洁、现代化和可以“心安神泰”的完全信赖。不过&#xff0c;在一些特殊情况下我们唯有进入 Swift 底层的动态世界方能真正地“随遇而安”。 保安局“刘局长”曾语重心长的教导过我们&#xff1a;“非常时期&#xff0c;用非常方法…

leetcode代码记录(删除字符串中的所有相邻重复项

目录 1. 题目&#xff1a;2. 我的代码&#xff1a;小结&#xff1a; 1. 题目&#xff1a; 给出由小写字母组成的字符串 S&#xff0c;重复项删除操作会选择两个相邻且相同的字母&#xff0c;并删除它们。 在 S 上反复执行重复项删除操作&#xff0c;直到无法继续删除。 在完成…

Uibot6.0 (RPA财务机器人师资培训第1天 )RPA+AI、RPA基础语法

训练网站&#xff1a;泓江科技 (lessonplan.cn)https://laiye.lessonplan.cn/list/ec0f5080-e1de-11ee-a1d8-3f479df4d981(本博客中会有部分课程ppt截屏,如有侵权请及请及时与小北我取得联系~&#xff09; 紧接着小北之前的几篇博客&#xff0c;友友们我们即将开展新课的学习~…

Socket类

2.2 Socket类 Socket 类&#xff1a;该类实现客户端套接字&#xff0c;套接字指的是两台设备之间通讯的端点。 构造方法 public Socket(String host, int port) :创建套接字对象并将其连接到指定主机上的指定端口号。如果指定的host是null &#xff0c;则相当于指定地址为回送…

论文阅读之AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

文章目录 原文链接主要内容模型图技术细节实验结果 原文链接 AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE 主要内容 这篇文章的主要内容是介绍了一种新的计算机视觉模型——Vision Transformer&#xff08;ViT&#xff09;&#xff0c;这是…

爬虫基础:HTTP基本原理

爬虫基础&#xff1a;HTTP基本原理 前言HTTP基本原理URI 和 URLHTTP 和 HTTPSHTTP 请求过程请求与响应HTTP请求HTTP响应请求与响应的交互过程 HTTP 2.0二进制传输多路复用Header压缩服务器端提前响应内容安全 前言 了解 HTTP的基本原理&#xff0c;了解从往测览器中输人 URL到获…

软件安全测评要点有哪些?第三方软件安全测试是必需品吗?

在当今数字化时代&#xff0c;软件安全测试是每个软件开发团队都不能忽视的重要环节。安全测试是指对软件产品进行系统、全面的安全性评测与检测的过程。它旨在发现并修复软件中存在的漏洞和安全隐患&#xff0c;以确保软件能够在使用过程中保护用户的数据和隐私不被非法访问和…

Pytest自动化测试框架快速上手(超详细)

&#x1f345; 视频学习&#xff1a;文末有免费的配套视频可观看 &#x1f345; 关注公众号&#xff1a;互联网杂货铺&#xff0c;回复1 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;薪资嘎嘎涨 pytest是一个非常成熟的全功能的Python测试框架&#…

《操作系统实践-基于Linux应用与内核编程》第10章--实验 Qt聊天程序

前言: 内容参考《操作系统实践-基于Linux应用与内核编程》一书的示例代码和教材内容&#xff0c;所做的读书笔记。本文记录再这里按照书中示例做一遍代码编程实践加深对操作系统的理解。 引用: 《操作系统实践-基于Linux应用与内核编程》 作者&#xff1a;房胜、李旭健、黄…

边缘检测-Tiny and Efficient Model for the Edge Detection Generalization

源代码: https://github.com/xavysp/TEED 论文地址&#xff1a;https://arxiv.org/pdf/2308.06468.pdf 大多数高级计算机视觉任务依赖于低级图像操作作为其初始过程。边缘检测、图像增强和超分辨率等操作为更高级的图像分析提供了基础。在这项工作中&#xff0c;我们考虑三个…

YUNBEE云贝-OBCP大军又一满分学员登榜!

课程介绍 培训概述 OceanBase 认证是 OceanBase 官方推出的唯一人才能力认证体系&#xff0c;代表了阿里巴巴及蚂蚁集团官方对考生关于 OceanBase 技术能力的认可&#xff0c;旨在帮助考生更好地学习 OceanBase 数据库产品&#xff0c;早日融入 OceanBase 技术生态体系&#x…

浏览量这么低,还要不要继续坚持?

哈喽&#xff0c;你好啊&#xff0c;我是雷工&#xff01; 曾经在一个群里聊天&#xff0c;有群友看到我两位数的浏览量&#xff0c;说到&#xff1a;浏览量这么低还坚持什么&#xff1f; 浏览量低是事实&#xff0c;大多数是十几二十的&#xff0c;上百的都是少数&#xff0c…